- displacementsThe nonlinear displacement variables for the problem
C++ Type:std::vector<VariableName>
Controllable:No
Description:The nonlinear displacement variables for the problem
DynamicTensorMechanics
Set up dynamic stress divergence kernels
Description
This action creates the DynamicStressDivergenceTensors kernel input blocks in all coordinate directions. More information about the usage of this action can be found at Dynamics
Input Parameters
- absolute_value_vector_tagsThe tag names for extra vectors that the absolute value of the residual should be accumulated into
C++ Type:std::vector<TagName>
Controllable:No
Description:The tag names for extra vectors that the absolute value of the residual should be accumulated into
- accelerationsaccel_x accel_y accel_z Names of the acceleration variables
Default:accel_x accel_y accel_z
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:Names of the acceleration variables
- active__all__ If specified only the blocks named will be visited and made active
Default:__all__
C++ Type:std::vector<std::string>
Controllable:No
Description:If specified only the blocks named will be visited and made active
- add_variablesFalseAdd the displacement variables
Default:False
C++ Type:bool
Controllable:No
Description:Add the displacement variables
- automatic_eigenstrain_namesFalseCollects all material eigenstrains and passes to required strain calculator within TMA internally.
Default:False
C++ Type:bool
Controllable:No
Description:Collects all material eigenstrains and passes to required strain calculator within TMA internally.
- base_nameMaterial property base name
C++ Type:std::string
Controllable:No
Description:Material property base name
- constraint_typesType of each constraint: stress or strain.
C++ Type:MultiMooseEnum
Controllable:No
Description:Type of each constraint: stress or strain.
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- cylindrical_axis_point1Starting point for direction of axis of rotation for cylindrical stress/strain.
C++ Type:libMesh::Point
Controllable:No
Description:Starting point for direction of axis of rotation for cylindrical stress/strain.
- cylindrical_axis_point2Ending point for direction of axis of rotation for cylindrical stress/strain.
C++ Type:libMesh::Point
Controllable:No
Description:Ending point for direction of axis of rotation for cylindrical stress/strain.
- decomposition_methodTaylorExpansionMethods to calculate the finite strain and rotation increments
Default:TaylorExpansion
C++ Type:MooseEnum
Controllable:No
Description:Methods to calculate the finite strain and rotation increments
- densitydensityName of Material Property that provides the density
Default:density
C++ Type:MaterialPropertyName
Controllable:No
Description:Name of Material Property that provides the density
- directionDirection stress/strain is calculated in
C++ Type:libMesh::Point
Controllable:No
Description:Direction stress/strain is calculated in
- eigenstrain_namesList of eigenstrains to be applied in this strain calculation
C++ Type:std::vector<MaterialPropertyName>
Controllable:No
Description:List of eigenstrains to be applied in this strain calculation
- extra_vector_tagsThe tag names for extra vectors that residual data should be saved into
C++ Type:std::vector<TagName>
Controllable:No
Description:The tag names for extra vectors that residual data should be saved into
- formulationTOTALSelect between the total Lagrangian (TOTAL) and updated Lagrangian (UPDATED) formulations for the new kernel system.
Default:TOTAL
C++ Type:MooseEnum
Controllable:No
Description:Select between the total Lagrangian (TOTAL) and updated Lagrangian (UPDATED) formulations for the new kernel system.
- global_strainName of the global strain material to be applied in this strain calculation. The global strain tensor is constant over the whole domain and allows visualization of the deformed shape with the periodic BC
C++ Type:MaterialPropertyName
Controllable:No
Description:Name of the global strain material to be applied in this strain calculation. The global strain tensor is constant over the whole domain and allows visualization of the deformed shape with the periodic BC
- inactiveIf specified blocks matching these identifiers will be skipped.
C++ Type:std::vector<std::string>
Controllable:No
Description:If specified blocks matching these identifiers will be skipped.
- incrementalFalseUse incremental or total strain (if not explicitly specified this defaults to incremental for finite strain and total for small strain)
Default:False
C++ Type:bool
Controllable:No
Description:Use incremental or total strain (if not explicitly specified this defaults to incremental for finite strain and total for small strain)
- mass_damping_coefficient0Name of material property or a constant real number defining mass Rayleigh parameter (eta).
Default:0
C++ Type:MaterialPropertyName
Controllable:No
Description:Name of material property or a constant real number defining mass Rayleigh parameter (eta).
- new_systemFalseIf true use the new LagrangianStressDiverence kernels.
Default:False
C++ Type:bool
Controllable:No
Description:If true use the new LagrangianStressDiverence kernels.
- scalingThe scaling to apply to the displacement variables
C++ Type:double
Controllable:No
Description:The scaling to apply to the displacement variables
- spherical_center_pointCenter point of the spherical coordinate system.
C++ Type:libMesh::Point
Controllable:No
Description:Center point of the spherical coordinate system.
- static_initializationFalseSet to true get the system to equilibrium under gravity by running a quasi-static analysis (by solving Ku = F) in the first time step.
Default:False
C++ Type:bool
Controllable:No
Description:Set to true get the system to equilibrium under gravity by running a quasi-static analysis (by solving Ku = F) in the first time step.
- stiffness_damping_coefficient0Name of material property or a constant real number defining stiffness Rayleigh parameter (zeta).
Default:0
C++ Type:MaterialPropertyName
Controllable:No
Description:Name of material property or a constant real number defining stiffness Rayleigh parameter (zeta).
- strainSMALLStrain formulation
Default:SMALL
C++ Type:MooseEnum
Controllable:No
Description:Strain formulation
- strain_base_nameThe base name used for the strain. If not provided, it will be set equal to base_name
C++ Type:std::string
Controllable:No
Description:The base name used for the strain. If not provided, it will be set equal to base_name
- targetsFunctions giving the target values of each constraint.
C++ Type:std::vector<FunctionName>
Controllable:No
Description:Functions giving the target values of each constraint.
- temperatureThe temperature
C++ Type:std::vector<VariableName>
Controllable:No
Description:The temperature
- use_automatic_differentiationFalseFlag to use automatic differentiation (AD) objects when possible
Default:False
C++ Type:bool
Controllable:No
Description:Flag to use automatic differentiation (AD) objects when possible
- use_displaced_meshFalseWhether to use displaced mesh in the kernels
Default:False
C++ Type:bool
Controllable:No
Description:Whether to use displaced mesh in the kernels
- use_finite_deform_jacobianFalseJacobian for corrotational finite strain
Default:False
C++ Type:bool
Controllable:No
Description:Jacobian for corrotational finite strain
- velocitiesvel_x vel_y vel_z Names of the velocity variables
Default:vel_x vel_y vel_z
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:Names of the velocity variables
- verboseFalseDisplay extra information.
Default:False
C++ Type:bool
Controllable:No
Description:Display extra information.
- volumetric_locking_correctionFalseFlag to correct volumetric locking
Default:False
C++ Type:bool
Controllable:No
Description:Flag to correct volumetric locking
Optional Parameters
- additional_generate_outputAdd scalar quantity output for stress and/or strain (will be appended to the list in `generate_output`)
C++ Type:MultiMooseEnum
Controllable:No
Description:Add scalar quantity output for stress and/or strain (will be appended to the list in `generate_output`)
- additional_material_output_familySpecifies the family of FE shape functions to use for this variable.
C++ Type:MultiMooseEnum
Controllable:No
Description:Specifies the family of FE shape functions to use for this variable.
- additional_material_output_orderSpecifies the order of the FE shape function to use for this variable.
C++ Type:MultiMooseEnum
Controllable:No
Description:Specifies the order of the FE shape function to use for this variable.
- generate_outputAdd scalar quantity output for stress and/or strain
C++ Type:MultiMooseEnum
Controllable:No
Description:Add scalar quantity output for stress and/or strain
- material_output_familySpecifies the family of FE shape functions to use for this variable.
C++ Type:MultiMooseEnum
Controllable:No
Description:Specifies the family of FE shape functions to use for this variable.
- material_output_orderSpecifies the order of the FE shape function to use for this variable.
C++ Type:MultiMooseEnum
Controllable:No
Description:Specifies the order of the FE shape function to use for this variable.
Output Parameters
- blockThe list of ids of the blocks (subdomain) that the stress divergence kernels will be applied to
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of ids of the blocks (subdomain) that the stress divergence kernels will be applied to
- diag_save_inThe displacement diagonal preconditioner terms
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:The displacement diagonal preconditioner terms
- save_inThe displacement residuals
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:The displacement residuals
Advanced Parameters
- hht_alpha0alpha parameter for mass dependent numerical damping induced by HHT time integration scheme
Default:0
C++ Type:double
Controllable:No
Description:alpha parameter for mass dependent numerical damping induced by HHT time integration scheme
- newmark_beta0.25beta parameter for Newmark Time integration
Default:0.25
C++ Type:double
Controllable:No
Description:beta parameter for Newmark Time integration
- newmark_gamma0.5gamma parameter for Newmark Time integration
Default:0.5
C++ Type:double
Controllable:No
Description:gamma parameter for Newmark Time integration
Time Integration Parameters Parameters
- out_of_plane_directionzThe direction of the out-of-plane strain.
Default:z
C++ Type:MooseEnum
Controllable:No
Description:The direction of the out-of-plane strain.
- out_of_plane_pressure_functionFunction used to prescribe pressure (applied toward the body) in the out-of-plane direction (y for 1D Axisymmetric or z for 2D Cartesian problems)
C++ Type:FunctionName
Controllable:No
Description:Function used to prescribe pressure (applied toward the body) in the out-of-plane direction (y for 1D Axisymmetric or z for 2D Cartesian problems)
- out_of_plane_pressure_material0Material used to prescribe pressure (applied toward the body) in the out-of-plane direction
Default:0
C++ Type:MaterialPropertyName
Controllable:No
Description:Material used to prescribe pressure (applied toward the body) in the out-of-plane direction
- out_of_plane_strainVariable for the out-of-plane strain for plane stress models
C++ Type:VariableName
Controllable:No
Description:Variable for the out-of-plane strain for plane stress models
- planar_formulationNONEOut-of-plane stress/strain formulation
Default:NONE
C++ Type:MooseEnum
Controllable:No
Description:Out-of-plane stress/strain formulation
- pressure_factorScale factor applied to prescribed out-of-plane pressure (both material and function)
C++ Type:double
Controllable:No
Description:Scale factor applied to prescribed out-of-plane pressure (both material and function)
- scalar_out_of_plane_strainScalar variable for the out-of-plane strain (in y direction for 1D Axisymmetric or in z direction for 2D Cartesian problems)
C++ Type:VariableName
Controllable:No
Description:Scalar variable for the out-of-plane strain (in y direction for 1D Axisymmetric or in z direction for 2D Cartesian problems)