FunctorElementalAux

Evaluates a functor (variable, function or functor material property) on the current element or quadrature point.

Overview

This object populates an elemental auxiliary variable by evaluating a functor with a cell-center/elemental or quadrature-point based argument. This functor may be a material property, a function or another variable. A cell-center/elemental argument should be used when a cell-averaged quantity (like for finite volume computations) is desired. Cell-center/elemental vs. quadrature-point based evaluations are controlled by the use_qp_arg boolean parameter. By default the parameter is false.

commentnote

The version of this auxiliary kernel for automatic differentiation (AD) functors (in particular AD material properties) is ADFunctorElementalAux.

Example input syntax

In this example, we use FunctorElementalAux to convert some material properties functors, defined by the fluid properties material, to auxiliary variables, to examine them in an Exodus output.

[AuxKernels]
  [speed]
    type = VectorMagnitudeAux
    variable = 'velocity_norm'
    x = u
    y = v
  []

  # To output the functor material properties
  [rho_out]
    type = ADFunctorElementalAux
    functor = 'rho'
    variable = 'rho_var'
    execute_on = 'timestep_begin'
  []
  [drho_dp_out]
    type = FunctorElementalAux
    functor = 'drho/dpressure'
    variable = 'drho_dp_var'
    execute_on = 'timestep_begin'
  []
  [drho_dT_out]
    type = FunctorElementalAux
    functor = 'drho/dT_fluid'
    variable = 'drho_dT_var'
    execute_on = 'timestep_begin'
  []
  [drho_dt_out]
    type = ADFunctorElementalAux
    functor = 'drho_dt'
    variable = 'rho_dot_var'
    execute_on = 'timestep_begin'
  []
  [cp_out]
    type = ADFunctorElementalAux
    functor = 'cp'
    variable = 'cp_var'
    execute_on = 'timestep_begin'
  []
  [dcp_dp_out]
    type = FunctorElementalAux
    functor = 'dcp/dpressure'
    variable = 'dcp_dp_var'
    execute_on = 'timestep_begin'
  []
  [dcp_dT_out]
    type = FunctorElementalAux
    functor = 'dcp/dT_fluid'
    variable = 'dcp_dT_var'
    execute_on = 'timestep_begin'
  []
  [dcp_dt_out]
    type = ADFunctorElementalAux
    functor = 'dcp_dt'
    variable = 'cp_dot_var'
    execute_on = 'timestep_begin'
  []
  [cv_out]
    type = ADFunctorElementalAux
    functor = 'cv'
    variable = 'cv_var'
    execute_on = 'timestep_begin'
  []
  [mu_out]
    type = ADFunctorElementalAux
    functor = 'mu'
    variable = 'mu_var'
    execute_on = 'timestep_begin'
  []
  [dmu_dp_out]
    type = FunctorElementalAux
    functor = 'dmu/dpressure'
    variable = 'dmu_dp_var'
    execute_on = 'timestep_begin'
  []
  [dmu_dT_out]
    type = FunctorElementalAux
    functor = 'dmu/dT_fluid'
    variable = 'dmu_dT_var'
    execute_on = 'timestep_begin'
  []
  [k_out]
    type = ADFunctorElementalAux
    functor = 'k'
    variable = 'k_var'
    execute_on = 'timestep_begin'
  []
  [dk_dp_out]
    type = FunctorElementalAux
    functor = 'dk/dpressure'
    variable = 'dk_dp_var'
    execute_on = 'timestep_begin'
  []
  [dk_dT_out]
    type = FunctorElementalAux
    functor = 'dk/dT_fluid'
    variable = 'dk_dT_var'
    execute_on = 'timestep_begin'
  []
  [Pr_out]
    type = ADFunctorElementalAux
    functor = 'Pr'
    variable = 'Pr_var'
    execute_on = 'timestep_begin'
  []
  [dPr_dp_out]
    type = FunctorElementalAux
    functor = 'dPr/dpressure'
    variable = 'dPr_dp_var'
    execute_on = 'timestep_begin'
  []
  [dPr_dT_out]
    type = FunctorElementalAux
    functor = 'dPr/dT_fluid'
    variable = 'dPr_dT_var'
    execute_on = 'timestep_begin'
  []
  [Re_out]
    type = ADFunctorElementalAux
    functor = 'Re'
    variable = 'Re_var'
    execute_on = 'timestep_begin'
  []
  [dRe_dp_out]
    type = FunctorElementalAux
    functor = 'dRe/dpressure'
    variable = 'dRe_dp_var'
    execute_on = 'timestep_begin'
  []
  [dRe_dT_out]
    type = FunctorElementalAux
    functor = 'dRe/dT_fluid'
    variable = 'dRe_dT_var'
    execute_on = 'timestep_begin'
  []
  [Re_h_out]
    type = ADFunctorElementalAux
    functor = 'Re_h'
    variable = 'Re_h_var'
    execute_on = 'timestep_begin'
  []
  [Re_i_out]
    type = ADFunctorElementalAux
    functor = 'Re_i'
    variable = 'Re_i_var'
    execute_on = 'timestep_begin'
  []
[]
(../moose/modules/navier_stokes/test/tests/finite_volume/wcns/materials/functorfluidprops.i)

Input Parameters

  • functorThe functor to evaluate

    C++ Type:MooseFunctorName

    Controllable:No

    Description:The functor to evaluate

  • variableThe name of the variable that this object applies to

    C++ Type:AuxVariableName

    Controllable:No

    Description:The name of the variable that this object applies to

Required Parameters

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • check_boundary_restrictedTrueWhether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Whether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh

  • execute_onLINEAR TIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS, PRE_DISPLACE.

    Default:LINEAR TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS, PRE_DISPLACE

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS, PRE_DISPLACE.

  • factor1A factor to apply on the functor

    Default:1

    C++ Type:MooseFunctorName

    Controllable:No

    Description:A factor to apply on the functor

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters