- componentAn integer corresponding to the direction the variable this auxkernel acts in. (0 for x, 1 for y, 2 for z)
C++ Type:unsigned int
Controllable:No
Description:An integer corresponding to the direction the variable this auxkernel acts in. (0 for x, 1 for y, 2 for z)
- polar_xThe x component of the polarization
C++ Type:std::vector<VariableName>
Controllable:No
Description:The x component of the polarization
- polar_yThe y component of the polarization
C++ Type:std::vector<VariableName>
Controllable:No
Description:The y component of the polarization
- variableThe name of the variable that this object applies to
C++ Type:AuxVariableName
Controllable:No
Description:The name of the variable that this object applies to
MicroforceBulkEnergy
The MicroforceBulkEnergy has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
Calculates the free energy density dependent on the local polarization field.
Overview
Example Input File Syntax
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- check_boundary_restrictedTrueWhether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
Default:True
C++ Type:bool
Controllable:No
Description:Whether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
- execute_onLINEAR TIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS, PRE_DISPLACE.
Default:LINEAR TIMESTEP_END
C++ Type:ExecFlagEnum
Options:NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS, PRE_DISPLACE
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS, PRE_DISPLACE.
- polar_zThe z component of the polarization
C++ Type:std::vector<VariableName>
Controllable:No
Description:The z component of the polarization
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
(test/tests/auxkernels/microforce.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
xmin = -6.0
xmax = 6.0
ymin = -6.0
ymax = 6.0
zmin = -2.0
zmax = 2.0
elem_type = HEX8
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '-6.0 -6.0 -2.0'
new_boundary = 100
[../]
# additional boundary sideset (one node) to zero one of the elastic displacement vectors - eliminates rigid body translations from the degrees of freedom
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./Fb_x]
order = CONSTANT
family = MONOMIAL
[../]
[./Fb_y]
order = CONSTANT
family = MONOMIAL
[../]
[./Fb_z]
order = CONSTANT
family = MONOMIAL
[../]
[./Felstr_x]
order = CONSTANT
family = MONOMIAL
[../]
[./Felstr_y]
order = CONSTANT
family = MONOMIAL
[../]
[./Felstr_z]
order = CONSTANT
family = MONOMIAL
[../]
[./Felec_x]
order = CONSTANT
family = MONOMIAL
[../]
[./Felec_y]
order = CONSTANT
family = MONOMIAL
[../]
[./Felec_z]
order = CONSTANT
family = MONOMIAL
[../]
[./Fw_x]
order = CONSTANT
family = MONOMIAL
[../]
[./Fw_y]
order = CONSTANT
family = MONOMIAL
[../]
[./Fw_z]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./fbx]
type = MicroforceBulkEnergy
variable = Fb_x
component = 0
[../]
[./fby]
type = MicroforceBulkEnergy
variable = Fb_y
component = 1
[../]
[./fbz]
type = MicroforceBulkEnergy
variable = Fb_z
component = 2
[../]
[./felstrx]
type = MicroforceElectrostrictiveCouplingEnergy
variable = Felstr_x
component = 0
[../]
[./felstry]
type = MicroforceElectrostrictiveCouplingEnergy
variable = Felstr_y
component = 1
[../]
[./felstrz]
type = MicroforceElectrostrictiveCouplingEnergy
variable = Felstr_z
component = 2
[../]
[./felecx]
type = MicroforceElectrostaticEnergy
variable = Felec_x
component = 0
[../]
[./felecy]
type = MicroforceElectrostaticEnergy
variable = Felec_y
component = 1
[../]
[./felecz]
type = MicroforceElectrostaticEnergy
variable = Felec_z
component = 2
[../]
[./fwx]
type = MicroforceWallEnergy
variable = Fw_x
component = 0
[../]
[./fwy]
type = MicroforceWallEnergy
variable = Fw_y
component = 1
[../]
[./fwz]
type = MicroforceWallEnergy
variable = Fw_z
component = 2
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 0.42 0.735 0.26 0.61 -3.67 0 0 0 0'
[../]
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175 79.4 111.1'
[../]
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.089 0.026 0.026 -0.089 0.026 -0.089 -0.03375 -0.03375 -0.03375'
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./permitivitty_1]
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
#note below we use a strain-renormalized functional for lead titanate (this is different than the stress-free functionals typically used)
# they are related by a Legendre transformation
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
#[./elapsed]
# type = PerfGraphData
# section_name = "Root"
# data_type = total
#[../]
#[./nodes]
# type = NumNodes
#[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-8 1e-8 bjacobi allreduce'
[../]
[]
#[Debug]
# show_var_residual_norms = true
#[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
dtmax = 0.8
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
num_steps = 10
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[./out]
type = Exodus
file_base = out_microforce_test
elemental_as_nodal = true
interval = 1
[../]
[./outCSV]
type = CSV
file_base = out_microforce_test
[../]
[]
(test/tests/transform_test/BFO_P0A0_transform_kernel_test.i)
Nx = 3
Ny = 3
Nz = 3
xMax = 1.0
yMax = 1.0
zMax = 1.0
############################################
##
## This input file aims to solve the BFO
## problem where one of the components of
## the order parameters is aligned along
## [111] || global z
##
## As such, all of the residuals and
## jacobians need to be transformed (rotated)
## This will be done in general at a later date
## However, since this the Aux system is used
## extensively to do this, indices will appear
## as p0,p1,p2,a0,a1,a2,u0,u1,u2 which indicate
## derivatives w.r.t the components of various
## order parameters in the transformed coords.
##
## Indices of microforces and jacobians
## will also have bp, br, rp, els, ros, sels, sros
## which denote the bulk polar, bulk roto, rotopolar,
## electrostrictive, rotostrictive,
## stress- electrostrictive, and stress- rotostrictive
## terms.
##
## i.e, Jbp_p0p0 corresoponds to the on-diagonal
## jacobian associated with the bulk energy for the
## polarization.
##
## any instance of 1_x,1_y,1_z will denote the current
## global cartesian coordinate system which is
## orthonormal and defined by the S matrix.
##
## any instance of o_x,o_y,o_z denote the original
## cartesian coordinate system.
##
## i.e, P1 = S Po => Po = S^{-1} P1
##
## Finally, some indices are q0,q1,q2,q3,
## which follow q = <p0,p1,p2,a0,a1,a2,u0,u1,u2>
## ordering.
##
##
############################################
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = ${Nx}
ny = ${Ny}
nz = ${Nz}
xmin = 0.0
xmax = ${xMax}
ymin = 0.0
ymax = ${yMax}
zmin = 0.0
zmax = ${zMax}
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
displacements = 'u1_x u1_y u1_z'
[]
[Functions]
[./constPp]
type = ParsedFunction
value = 0.54
[../]
[./constAp]
type = ParsedFunction
value = 7.37
[../]
[]
[Variables]
[./u1_x]
[../]
[./u1_y]
[../]
[./u1_z]
[../]
# [./global_strain]
# order = SIXTH
# family = SCALAR
# [../]
[./P1_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-6
max = 0.01e-6
[../]
[../]
[./P1_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-6
max = 0.01e-6
[../]
[../]
[./P1_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constPp
[../]
[../]
[./A1_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-6
max = 0.01e-6
[../]
[../]
[./A1_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-6
max = 0.01e-6
[../]
[../]
[./A1_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constAp
[../]
[../]
[]
[AuxVariables]
############################################
##
## Transformed coordinates
##
## These follow Po = Inv[S] P1
## In the AuxKernels that calculate this
##
## We will flag this as 'inverse = true'
##
############################################
[./Po_x]
order = FIRST
family = LAGRANGE
[../]
[./Po_y]
order = FIRST
family = LAGRANGE
[../]
[./Po_z]
order = FIRST
family = LAGRANGE
[../]
[./Ao_x]
order = FIRST
family = LAGRANGE
[../]
[./Ao_y]
order = FIRST
family = LAGRANGE
[../]
[./Ao_z]
order = FIRST
family = LAGRANGE
[../]
############################################
##
## Microforces
##
## We have bulk energy P, bulk energy A
## and a RP coupling.
## This means we should have 3+3+6 forces.
##
############################################
[./fbp_p0]
order = CONSTANT
family = MONOMIAL
[../]
[./fbp_p1]
order = CONSTANT
family = MONOMIAL
[../]
[./fbp_p2]
order = CONSTANT
family = MONOMIAL
[../]
[./fba_a0]
order = CONSTANT
family = MONOMIAL
[../]
[./fba_a1]
order = CONSTANT
family = MONOMIAL
[../]
[./fba_a2]
order = CONSTANT
family = MONOMIAL
[../]
[./frp_p0]
order = CONSTANT
family = MONOMIAL
[../]
[./frp_p1]
order = CONSTANT
family = MONOMIAL
[../]
[./frp_p2]
order = CONSTANT
family = MONOMIAL
[../]
[./frp_a0]
order = CONSTANT
family = MONOMIAL
[../]
[./frp_a1]
order = CONSTANT
family = MONOMIAL
[../]
[./frp_a2]
order = CONSTANT
family = MONOMIAL
[../]
[./Jbp_p0p0]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jbp_p1p1]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jbp_p2p2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jbp_p0p1]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jbp_p1p2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jbp_p0p2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jba_a0a0]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jba_a1a1]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jba_a2a2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jba_a0a1]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jba_a1a2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jba_a0a2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p0p0]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p1p1]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p2p2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p0p1]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p1p2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p0p2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_a0a0]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_a1a1]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_a2a2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_a0a1]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_a1a2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_a0a2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p0a0]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p0a1]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p0a2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p1a0]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p1a1]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p1a2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p2a0]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p2a1]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[./Jrp_p2a2]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[]
[AuxKernels]
[./p1]
type = Transformed111Order
variable = Po_x
inverse = true
component = 0
order_param_x = P1_x
order_param_y = P1_y
order_param_z = P1_z
[../]
[./p2]
type = Transformed111Order
variable = Po_y
inverse = true
component = 1
order_param_x = P1_x
order_param_y = P1_y
order_param_z = P1_z
[../]
[./p3]
type = Transformed111Order
variable = Po_z
inverse = true
component = 2
order_param_x = P1_x
order_param_y = P1_y
order_param_z = P1_z
[../]
[./a1]
type = Transformed111Order
variable = Ao_x
inverse = true
component = 0
order_param_x = A1_x
order_param_y = A1_y
order_param_z = A1_z
[../]
[./a2]
type = Transformed111Order
variable = Ao_y
inverse = true
component = 1
order_param_x = A1_x
order_param_y = A1_y
order_param_z = A1_z
[../]
[./a3]
type = Transformed111Order
variable = Ao_z
inverse = true
component = 2
order_param_x = A1_x
order_param_y = A1_y
order_param_z = A1_z
[../]
##################################################
##
##
## Microforces
##
##
##################################################
[./fbpp1]
type = MicroforceBulkEnergy
variable = fbp_p0
component = 0
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./fbpp2]
type = MicroforceBulkEnergy
variable = fbp_p1
component = 1
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./fbpp3]
type = MicroforceBulkEnergy
variable = fbp_p2
component = 2
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./fbaa1]
type = MicroforceRotoBulkEnergy
variable = fba_a0
component = 0
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./fbaa2]
type = MicroforceRotoBulkEnergy
variable = fba_a1
component = 1
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./fbaa3]
type = MicroforceRotoBulkEnergy
variable = fba_a2
component = 2
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./frpp0]
type = MicroforceRotopolarCoupledPolarEnergy
variable = frp_p0
component = 0
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./frpp1]
type = MicroforceRotopolarCoupledPolarEnergy
variable = frp_p1
component = 1
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./frpp2]
type = MicroforceRotopolarCoupledPolarEnergy
variable = frp_p2
component = 2
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./frpa0]
type = MicroforceRotopolarCoupledDistortEnergy
variable = frp_a0
component = 0
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./frpa1]
type = MicroforceRotopolarCoupledDistortEnergy
variable = frp_a1
component = 1
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./frpa2]
type = MicroforceRotopolarCoupledDistortEnergy
variable = frp_a2
component = 2
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
##################################################
##
##
## Jacobians
##
##
##################################################
[./Jbpp0p0]
type = JacobiansBulkEnergy
variable = Jbp_p0p0
index_i = 0
index_j = 0
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jbpp1p1]
type = JacobiansBulkEnergy
variable = Jbp_p1p1
index_i = 1
index_j = 1
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jbpp2p2]
type = JacobiansBulkEnergy
variable = Jbp_p2p2
index_i = 2
index_j = 2
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jbpp0p1]
type = JacobiansBulkEnergy
variable = Jbp_p0p1
index_i = 0
index_j = 1
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jbpp1p2]
type = JacobiansBulkEnergy
variable = Jbp_p1p2
index_i = 1
index_j = 2
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jbpp0p2]
type = JacobiansBulkEnergy
variable = Jbp_p0p2
index_i = 0
index_j = 2
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jbaa0a0]
type = JacobiansRotoBulkEnergy
variable = Jba_a0a0
index_i = 0
index_j = 0
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jbaa1a1]
type = JacobiansRotoBulkEnergy
variable = Jba_a1a1
index_i = 1
index_j = 1
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jbaa2a2]
type = JacobiansRotoBulkEnergy
variable = Jba_a2a2
index_i = 2
index_j = 2
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jbaa0a1]
type = JacobiansRotoBulkEnergy
variable = Jba_a0a1
index_i = 0
index_j = 1
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jbaa1a2]
type = JacobiansRotoBulkEnergy
variable = Jba_a1a2
index_i = 1
index_j = 2
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jbaa0a2]
type = JacobiansRotoBulkEnergy
variable = Jba_a0a2
index_i = 0
index_j = 2
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp0p0]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p0p0
index_i = 0
index_j = 0
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp1p1]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p1p1
index_i = 1
index_j = 1
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp2p2]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p2p2
index_i = 2
index_j = 2
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpa0a0]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_a0a0
index_i = 3
index_j = 3
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpa1a1]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_a1a1
index_i = 4
index_j = 4
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpa2a2]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_a2a2
index_i = 5
index_j = 5
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp0p1]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p0p1
index_i = 0
index_j = 1
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp1p2]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p1p2
index_i = 1
index_j = 2
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp0p2]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p0p2
index_i = 0
index_j = 2
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp0a0]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p0a0
index_i = 0
index_j = 3
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp0a1]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p0a1
index_i = 0
index_j = 4
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp0a2]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p0a2
index_i = 0
index_j = 5
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp1a0]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p1a0
index_i = 1
index_j = 3
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp1a1]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p1a1
index_i = 1
index_j = 4
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp1a2]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p1a2
index_i = 1
index_j = 5
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp2a0]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p2a0
index_i = 2
index_j = 3
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp2a1]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p2a1
index_i = 2
index_j = 4
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpp2a2]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_p2a2
index_i = 2
index_j = 5
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpa0a1]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_a0a1
index_i = 3
index_j = 4
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpa0a2]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_a0a2
index_i = 3
index_j = 5
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[./Jrpa1a2]
type = JacobiansRotopolarCoupledEnergy
variable = Jrp_a1a2
index_i = 4
index_j = 5
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
execute_on = 'INITIAL LINEAR NONLINEAR'
[../]
[]
#[ScalarKernels]
# [./global_strain]
# type = GlobalStrain
# variable = global_strain
# global_strain_uo = global_strain_uo
# [../]
#[]
[Kernels]
[./TensorMechanics]
[../]
### Operators for the polar field: ###
[./bed_x]
type = Transformed111KernelOp3
variable = P1_x
component = 0
order_param_x = P1_x
order_param_y = P1_y
order_param_z = P1_z
f_q0 = fbp_p0
f_q1 = fbp_p1
f_q2 = fbp_p2
J_q0q0 = Jbp_p0p0
J_q1q1 = Jbp_p1p1
J_q2q2 = Jbp_p2p2
J_q0q1 = Jbp_p0p1
J_q1q2 = Jbp_p1p2
J_q0q2 = Jbp_p0p2
[../]
[./bed_y]
type = Transformed111KernelOp3
variable = P1_y
component = 1
order_param_x = P1_x
order_param_y = P1_y
order_param_z = P1_z
f_q0 = fbp_p0
f_q1 = fbp_p1
f_q2 = fbp_p2
J_q0q0 = Jbp_p0p0
J_q1q1 = Jbp_p1p1
J_q2q2 = Jbp_p2p2
J_q0q1 = Jbp_p0p1
J_q1q2 = Jbp_p1p2
J_q0q2 = Jbp_p0p2
[../]
[./bed_z]
type = Transformed111KernelOp3
variable = P1_z
component = 2
order_param_x = P1_x
order_param_y = P1_y
order_param_z = P1_z
f_q0 = fbp_p0
f_q1 = fbp_p1
f_q2 = fbp_p2
J_q0q0 = Jbp_p0p0
J_q1q1 = Jbp_p1p1
J_q2q2 = Jbp_p2p2
J_q0q1 = Jbp_p0p1
J_q1q2 = Jbp_p1p2
J_q0q2 = Jbp_p0p2
[../]
# Operators for the AFD field
[./rbed_x]
type = Transformed111KernelOp3
variable = A1_x
component = 0
order_param_x = A1_x
order_param_y = A1_y
order_param_z = A1_z
f_q0 = fba_a0
f_q1 = fba_a1
f_q2 = fba_a2
J_q0q0 = Jba_a0a0
J_q1q1 = Jba_a1a1
J_q2q2 = Jba_a2a2
J_q0q1 = Jba_a0a1
J_q1q2 = Jba_a1a2
J_q0q2 = Jba_a0a2
[../]
[./rbed_y]
type = Transformed111KernelOp3
variable = A1_y
component = 1
order_param_x = A1_x
order_param_y = A1_y
order_param_z = A1_z
f_q0 = fba_a0
f_q1 = fba_a1
f_q2 = fba_a2
J_q0q0 = Jba_a0a0
J_q1q1 = Jba_a1a1
J_q2q2 = Jba_a2a2
J_q0q1 = Jba_a0a1
J_q1q2 = Jba_a1a2
J_q0q2 = Jba_a0a2
[../]
[./rbed_z]
type = Transformed111KernelOp3
variable = A1_z
component = 2
order_param_x = A1_x
order_param_y = A1_y
order_param_z = A1_z
f_q0 = fba_a0
f_q1 = fba_a1
f_q2 = fba_a2
J_q0q0 = Jba_a0a0
J_q1q1 = Jba_a1a1
J_q2q2 = Jba_a2a2
J_q0q1 = Jba_a0a1
J_q1q2 = Jba_a1a2
J_q0q2 = Jba_a0a2
[../]
[./rpp_x]
type = Transformed111KernelOp6
variable = P1_x
component = 0
order_param_x = P1_x
order_param_y = P1_y
order_param_z = P1_z
order_param2_x = A1_x
order_param2_y = A1_y
order_param2_z = A1_z
f_q0 = frp_p0
f_q1 = frp_p1
f_q2 = frp_p2
f_q3 = frp_a0
f_q4 = frp_a1
f_q5 = frp_a2
J_q0q0 = Jrp_p0p0
J_q1q1 = Jrp_p1p1
J_q2q2 = Jrp_p2p2
J_q3q3 = Jrp_a0a0
J_q4q4 = Jrp_a1a1
J_q5q5 = Jrp_a2a2
J_q0q1 = Jrp_p0p1
J_q1q2 = Jrp_p1p2
J_q0q2 = Jrp_p0p2
J_q0q3 = Jrp_p0a0
J_q0q4 = Jrp_p0a1
J_q0q5 = Jrp_p0a2
J_q1q3 = Jrp_p1a0
J_q1q4 = Jrp_p1a1
J_q1q5 = Jrp_p1a2
J_q2q3 = Jrp_p2a0
J_q2q4 = Jrp_p1a1
J_q2q5 = Jrp_p1a2
J_q3q4 = Jrp_a0a1
J_q3q5 = Jrp_a0a2
J_q4q5 = Jrp_a1a2
[../]
[./rpp_y]
type = Transformed111KernelOp6
variable = P1_y
component = 1
order_param_x = P1_x
order_param_y = P1_y
order_param_z = P1_z
order_param2_x = A1_x
order_param2_y = A1_y
order_param2_z = A1_z
f_q0 = frp_p0
f_q1 = frp_p1
f_q2 = frp_p2
f_q3 = frp_a0
f_q4 = frp_a1
f_q5 = frp_a2
J_q0q0 = Jrp_p0p0
J_q1q1 = Jrp_p1p1
J_q2q2 = Jrp_p2p2
J_q3q3 = Jrp_a0a0
J_q4q4 = Jrp_a1a1
J_q5q5 = Jrp_a2a2
J_q0q1 = Jrp_p0p1
J_q1q2 = Jrp_p1p2
J_q0q2 = Jrp_p0p2
J_q0q3 = Jrp_p0a0
J_q0q4 = Jrp_p0a1
J_q0q5 = Jrp_p0a2
J_q1q3 = Jrp_p1a0
J_q1q4 = Jrp_p1a1
J_q1q5 = Jrp_p1a2
J_q2q3 = Jrp_p2a0
J_q2q4 = Jrp_p1a1
J_q2q5 = Jrp_p1a2
J_q3q4 = Jrp_a0a1
J_q3q5 = Jrp_a0a2
J_q4q5 = Jrp_a1a2
[../]
[./rpp_z]
type = Transformed111KernelOp6
variable = P1_z
component = 2
order_param_x = P1_x
order_param_y = P1_y
order_param_z = P1_z
order_param2_x = A1_x
order_param2_y = A1_y
order_param2_z = A1_z
f_q0 = frp_p0
f_q1 = frp_p1
f_q2 = frp_p2
f_q3 = frp_a0
f_q4 = frp_a1
f_q5 = frp_a2
J_q0q0 = Jrp_p0p0
J_q1q1 = Jrp_p1p1
J_q2q2 = Jrp_p2p2
J_q3q3 = Jrp_a0a0
J_q4q4 = Jrp_a1a1
J_q5q5 = Jrp_a2a2
J_q0q1 = Jrp_p0p1
J_q1q2 = Jrp_p1p2
J_q0q2 = Jrp_p0p2
J_q0q3 = Jrp_p0a0
J_q0q4 = Jrp_p0a1
J_q0q5 = Jrp_p0a2
J_q1q3 = Jrp_p1a0
J_q1q4 = Jrp_p1a1
J_q1q5 = Jrp_p1a2
J_q2q3 = Jrp_p2a0
J_q2q4 = Jrp_p1a1
J_q2q5 = Jrp_p1a2
J_q3q4 = Jrp_a0a1
J_q3q5 = Jrp_a0a2
J_q4q5 = Jrp_a1a2
[../]
[./rpa_x]
type = Transformed111KernelOp6
variable = A1_x
component = 3
order_param_x = P1_x
order_param_y = P1_y
order_param_z = P1_z
order_param2_x = A1_x
order_param2_y = A1_y
order_param2_z = A1_z
f_q0 = frp_p0
f_q1 = frp_p1
f_q2 = frp_p2
f_q3 = frp_a0
f_q4 = frp_a1
f_q5 = frp_a2
J_q0q0 = Jrp_p0p0
J_q1q1 = Jrp_p1p1
J_q2q2 = Jrp_p2p2
J_q3q3 = Jrp_a0a0
J_q4q4 = Jrp_a1a1
J_q5q5 = Jrp_a2a2
J_q0q1 = Jrp_p0p1
J_q1q2 = Jrp_p1p2
J_q0q2 = Jrp_p0p2
J_q0q3 = Jrp_p0a0
J_q0q4 = Jrp_p0a1
J_q0q5 = Jrp_p0a2
J_q1q3 = Jrp_p1a0
J_q1q4 = Jrp_p1a1
J_q1q5 = Jrp_p1a2
J_q2q3 = Jrp_p2a0
J_q2q4 = Jrp_p1a1
J_q2q5 = Jrp_p1a2
J_q3q4 = Jrp_a0a1
J_q3q5 = Jrp_a0a2
J_q4q5 = Jrp_a1a2
[../]
[./rpa_y]
type = Transformed111KernelOp6
variable = A1_y
component = 4
order_param_x = P1_x
order_param_y = P1_y
order_param_z = P1_z
order_param2_x = A1_x
order_param2_y = A1_y
order_param2_z = A1_z
f_q0 = frp_p0
f_q1 = frp_p1
f_q2 = frp_p2
f_q3 = frp_a0
f_q4 = frp_a1
f_q5 = frp_a2
J_q0q0 = Jrp_p0p0
J_q1q1 = Jrp_p1p1
J_q2q2 = Jrp_p2p2
J_q3q3 = Jrp_a0a0
J_q4q4 = Jrp_a1a1
J_q5q5 = Jrp_a2a2
J_q0q1 = Jrp_p0p1
J_q1q2 = Jrp_p1p2
J_q0q2 = Jrp_p0p2
J_q0q3 = Jrp_p0a0
J_q0q4 = Jrp_p0a1
J_q0q5 = Jrp_p0a2
J_q1q3 = Jrp_p1a0
J_q1q4 = Jrp_p1a1
J_q1q5 = Jrp_p1a2
J_q2q3 = Jrp_p2a0
J_q2q4 = Jrp_p1a1
J_q2q5 = Jrp_p1a2
J_q3q4 = Jrp_a0a1
J_q3q5 = Jrp_a0a2
J_q4q5 = Jrp_a1a2
[../]
[./rpa_z]
type = Transformed111KernelOp6
variable = A1_z
component = 5
order_param_x = P1_x
order_param_y = P1_y
order_param_z = P1_z
order_param2_x = A1_x
order_param2_y = A1_y
order_param2_z = A1_z
f_q0 = frp_p0
f_q1 = frp_p1
f_q2 = frp_p2
f_q3 = frp_a0
f_q4 = frp_a1
f_q5 = frp_a2
J_q0q0 = Jrp_p0p0
J_q1q1 = Jrp_p1p1
J_q2q2 = Jrp_p2p2
J_q3q3 = Jrp_a0a0
J_q4q4 = Jrp_a1a1
J_q5q5 = Jrp_a2a2
J_q0q1 = Jrp_p0p1
J_q1q2 = Jrp_p1p2
J_q0q2 = Jrp_p0p2
J_q0q3 = Jrp_p0a0
J_q0q4 = Jrp_p0a1
J_q0q5 = Jrp_p0a2
J_q1q3 = Jrp_p1a0
J_q1q4 = Jrp_p1a1
J_q1q5 = Jrp_p1a2
J_q2q3 = Jrp_p2a0
J_q2q4 = Jrp_p1a1
J_q2q5 = Jrp_p1a2
J_q3q4 = Jrp_a0a1
J_q3q5 = Jrp_a0a2
J_q4q5 = Jrp_a1a2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable = P1_x
time_scale = 1.0
block = '0'
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable = P1_y
time_scale = 1.0
block = '0'
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = P1_z
time_scale = 1.0
block = '0'
[../]
[./a_x_time]
type = TimeDerivativeScaled
variable = A1_x
time_scale = 0.01
block = '0'
[../]
[./a_y_time]
type = TimeDerivativeScaled
variable = A1_y
time_scale = 0.01
block = '0'
[../]
[./a_z_time]
type = TimeDerivativeScaled
variable = A1_z
time_scale = 0.01
block = '0'
[../]
[]
[Materials]
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-2.81296 1.72351 2.24147 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./Landau_A]
type = GenericConstantMaterial
prop_names = 'beta1 beta11 beta12 beta111 beta112 beta123 beta1111 beta1112 beta1122 beta1123'
prop_values = '-0.0137763 0.0000349266 0.0000498846 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./P_A_couple]
type = GenericConstantMaterial
prop_names = 't1111 t1122 t1212 t42111111 t24111111 t42111122 t24112222 t42112233 t24112233 t42112211 t24111122 t42111212 t42123312 t24121112 t24121233 t6211111111 t2611111111 t6211111122 t2611222222 t4411111111 t4411112222'
prop_values = '0.012516 0.0180504 -0.036155 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '295.179 117.567 117.567 295.179 117.567 295.179 74.0701 74.0701 74.0701'
########################################################################################
##
## The below Euler rotation below should rotate the [001]-oriented elasticity tensor to
## the [111]-orientation as it is equivalent to our S matrix.
## Note that the MOOSE convention is slightly different than Mathematica's so we use
## three different angles.
## Therefore, all of our strains will be calculated using ComputeSmallStrain in primed
## coordinates [i.e. e_{||,||}, e_{1,||}, ...]
##
## ...but then, it is important that our strains talk to our primed variables correctly.
##
########################################################################################
euler_angle_1 = 135.0
euler_angle_2 = -54.735610317245346
euler_angle_3 = -90.0
[../]
[./strain]
type = ComputeSmallStrain
#global_strain = global_strain
[../]
#[./global_strain]
# type = ComputeGlobalStrain
# scalar_global_strain = global_strain
# global_strain_uo = global_strain_uo
#[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./FbP1]
type = BulkEnergyEighth
execute_on = 'timestep_end'
polar_x = P1_x
polar_y = P1_y
polar_z = P1_z
[../]
[./FbPo]
type = BulkEnergyEighth
execute_on = 'timestep_end'
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
[../]
[./FbA1]
type = RotoBulkEnergyEighth
execute_on = 'timestep_end'
antiphase_A_x = A1_x
antiphase_A_y = A1_y
antiphase_A_z = A1_z
[../]
[./FbAo]
type = RotoBulkEnergyEighth
execute_on = 'timestep_end'
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
[../]
[./FcPA1]
type = RotoPolarCoupledEnergyEighth
execute_on = 'timestep_end'
polar_x = P1_x
polar_y = P1_y
polar_z = P1_z
antiphase_A_x = A1_x
antiphase_A_y = A1_y
antiphase_A_z = A1_z
[../]
[./FcPAo]
type = RotoPolarCoupledEnergyEighth
execute_on = 'timestep_end'
polar_x = Po_x
polar_y = Po_y
polar_z = Po_z
antiphase_A_x = Ao_x
antiphase_A_y = Ao_y
antiphase_A_z = Ao_z
[../]
[./Felu]
type = ElasticEnergy
execute_on = 'timestep_end'
[../]
[./Ftoto]
type = LinearCombinationPostprocessor
pp_names = 'FbPo FbAo FcPAo'
pp_coefs = ' 1 1 1'
execute_on = 'timestep_end'
##########################################
#
# NOTE: Ferret output is in attojoules
#
##########################################
[../]
[./Ftot1]
type = LinearCombinationPostprocessor
pp_names = 'FbP1 FbA1 FcPA1'
pp_coefs = ' 1 1 1'
execute_on = 'timestep_end'
##########################################
#
# NOTE: Ferret output is in attojoules
#
##########################################
[../]
[./perc_change]
type = EnergyRatePostprocessor
postprocessor = Ftot1
execute_on = 'timestep_end'
dt = dt
[../]
[]
[BCs]
[./Periodic]
[./xy]
auto_direction = 'x y z'
variable = 'u1_x u1_y u1_z P1_x P1_y P1_z A1_x A1_y A1_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u1_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u1_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u1_z
value = 0
[../]
[]
[UserObjects]
#[./global_strain_uo]
# type = GlobalBFOMaterialRVEUserObject
# execute_on = 'Initial Linear Nonlinear'
# polar_x = P1_x
# polar_y = P1_y
# polar_z = P1_z
# antiphase_A_x = A1_x
# antiphase_A_y = A1_y
# antiphase_A_z = A1_z
#[../]
[./kill]
type = Terminator
expression = 'perc_change <= 5.0e-5'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 121 1e-10 1e-10 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
type = Transient
dt = 0.08
solve_type = 'NEWTON'
scheme = 'bdf2'
dtmin = 1e-13
dtmax = 10.0
num_steps = 10
[]
[Outputs]
print_linear_residuals = false
[./out]
type = Exodus
file_base = out_P0A0_transformed_kernel_test
elemental_as_nodal = true
[../]
[]