RotostrictiveCouplingEnergyDensity

Overview

Computes the rotostrictive coupling energy density,

suitable for cubic parent phase ferroelectric materials with coupling to antiferrodistortive modes (i.e. ). The coefficients , and are the rotostrictive tensor components (in Voight notation). The vector is the oxygen octahedral antiphase tilt field and the elastic strain tensor of rank two. The units of the energy are given by units of and but an optional input parameter flag energyscale is provided allowing to quickly convert the postprocessed units.

Example Input File Syntax

Input Parameters

  • antiphase_A_xThe x component of the antiphase tilt vector

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The x component of the antiphase tilt vector

  • antiphase_A_yThe y component of the antiphase tilt vector

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The y component of the antiphase tilt vector

  • disp_xThe x component of the displacement

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The x component of the displacement

  • disp_yThe y component of the displacement

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The y component of the displacement

  • r11The coupling constants

    C++ Type:double

    Controllable:No

    Description:The coupling constants

  • r12The coupling constants

    C++ Type:double

    Controllable:No

    Description:The coupling constants

  • r44The coupling constants

    C++ Type:double

    Controllable:No

    Description:The coupling constants

  • variableThe name of the variable that this object applies to

    C++ Type:AuxVariableName

    Controllable:No

    Description:The name of the variable that this object applies to

Required Parameters

  • antiphase_A_zThe z component of the antiphase tilt vector

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The z component of the antiphase tilt vector

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • check_boundary_restrictedTrueWhether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Whether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh

  • disp_zThe z component of the displacement

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The z component of the displacement

  • execute_onLINEAR TIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS, PRE_DISPLACE.

    Default:LINEAR TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS, PRE_DISPLACE

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS, PRE_DISPLACE.

  • len_scale1the len_scale of the unit

    Default:1

    C++ Type:double

    Controllable:No

    Description:the len_scale of the unit

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters