DiffusionFluxBC

Computes a boundary residual contribution consistent with the Diffusion Kernel. Does not impose a boundary condition; instead computes the boundary contribution corresponding to the current value of grad(u) and accumulates it in the residual vector.

Description

DiffusionFluxBC is a FluxBC which is appropriate for use with the boundary terms arising from the Diffusion Kernel. DiffusionFluxBC does not "enforce" a boundary condition per-se (see, e.g. DirichletBC, NeumannBC, and related classes for that). Instead, this class is responsible for computing the residual (and Jacobian) contributions due to the boundary contribution arising from integration by parts on the Diffusion Kernel.

commentnote

The standard theory of elliptic operators requires the specification of boundary conditions on all parts of the boundary, so "implicitly" computing a residual contribution in this manner (instead of replacing it with the correct "data") falls outside of this theory. That said, there are instances where such an approach gives reasonable results in practice, see, for example, the paper by Griffiths (1997).

As an example, consider the Poisson problem with mixed boundary conditions: where is the domain, and is its boundary, and no boundary conditions are specified on . The weak formulation of this problem is: find satisfying the Dirichlet boundary conditions and such that (1) holds for every , i.e. test functions that vanish on the Dirichlet boundary. The DiffusionFluxBC class would then be used to compute the last term in Eq. (1).

References

  1. D. F. Griffiths. The `No Boundary Condition' outflow boundary condition. International Journal of Numerical Methods in Fluids, 24(4):393–411, 1997. URL: http://tinyurl.com/y77au2k.[BibTeX]

Example Input Syntax

  [./all]
    type = DiffusionFluxBC
    variable = u
    boundary = '2 4 100 101'
  [../]
(../moose/test/tests/mortar/continuity-2d-conforming/equalgradient.i)

Input Parameters

  • boundaryThe list of boundary IDs from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundary IDs from the mesh where this object applies

  • variableThe name of the variable that this residual object operates on

    C++ Type:NonlinearVariableName

    Controllable:No

    Description:The name of the variable that this residual object operates on

Required Parameters

  • displacementsThe displacements

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The displacements

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

Optional Parameters

  • absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution

  • extra_matrix_tagsThe extra tags for the matrices this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the matrices this Kernel should fill

  • extra_vector_tagsThe extra tags for the vectors this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the vectors this Kernel should fill

  • matrix_tagssystemThe tag for the matrices this Kernel should fill

    Default:system

    C++ Type:MultiMooseEnum

    Options:nontime, system

    Controllable:No

    Description:The tag for the matrices this Kernel should fill

  • vector_tagsnontimeThe tag for the vectors this Kernel should fill

    Default:nontime

    C++ Type:MultiMooseEnum

    Options:nontime, time

    Controllable:No

    Description:The tag for the vectors this Kernel should fill

Tagging Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • diag_save_inThe name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

    C++ Type:std::vector<AuxVariableName>

    Controllable:No

    Description:The name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • save_inThe name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

    C++ Type:std::vector<AuxVariableName>

    Controllable:No

    Description:The name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters