- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the variable that this residual object operates on
- velocityVelocity vector
C++ Type:MaterialPropertyName
Controllable:No
Description:Velocity vector
ADDGAdvection
Adds internal face advection flux contributions for discontinuous Galerkin discretizations
This is the automatic differentiation analog of DGConvection but with a couple distinctions:
The "velocity" parameter is a material property instead of a constant. This allows this object's use in a simulation where the velocity is being solved for and/or changing spatially. Additionally, the use of a material property as opposed to a coupled variable allows more straightforward propagation of derivatives for automatic differentiation.
A "advected_quantity" paramter is available which allows for advecting different quantities than the
variable
this object is acting upon
Example input syntax
In this example, a field u
is advected from a boundary condition on its left to the right boundary with a 1 0 0
velocity. In addition to advection, the simulation is governed by loss of u
through diffusion out of the top and bottom boundaries of the domain.
[DGKernels]
[convection]
type = ADDGAdvection
variable = u
velocity = 'velocity'
[]
[diffusion]
type = DGDiffusion
variable = u
sigma = 6
epsilon = -1
diff = 1
[]
[]
(../moose/test/tests/dgkernels/passive-scalar-channel-flow/test.i)Input Parameters
- advected_quantityAn optional material property to be advected. If not supplied, then the variable will be used.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional material property to be advected. If not supplied, then the variable will be used.
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- exclude_boundaryThe internal side sets to be excluded from this kernel.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The internal side sets to be excluded from this kernel.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- diag_save_inThe name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:The name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- save_inThe name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:The name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.