- componentAn integer corresponding to the direction in order parameter space this kernel acts in (e.g. for unrotated functionals 0 for q_x, 1 for q_y, 2 for q_z).
C++ Type:unsigned int
Controllable:No
Description:An integer corresponding to the direction in order parameter space this kernel acts in (e.g. for unrotated functionals 0 for q_x, 1 for q_y, 2 for q_z).
- polar_xThe x component of the polarization
C++ Type:std::vector<VariableName>
Controllable:No
Description:The x component of the polarization
- polar_yThe y component of the polarization
C++ Type:std::vector<VariableName>
Controllable:No
Description:The y component of the polarization
- u_xThe x component of the local elastic displacement
C++ Type:std::vector<VariableName>
Controllable:No
Description:The x component of the local elastic displacement
- u_yThe y component of the local elastic displacement
C++ Type:std::vector<VariableName>
Controllable:No
Description:The y component of the local elastic displacement
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the variable that this residual object operates on
ElectrostrictiveCouplingPolarDerivative
Calculates a residual contribution due to the variation w.r.t polarization of the electrostrictive coupling energy. Note: for cubic parent phase only.
Overview
Computes the residual and jacobian contributions corresponding microforces generated by variations of polarization of the electrostrictive free energy density . The governing time-dependent Landau-Ginzburg-Devonshire (TDLGD) equation of relaxation of the ferroelectric order is given by,
and we look for variational derivatives of
suitable for cubic parent phase ferroelectric materials (i.e. and ). The coefficients , and are the electrostrictive tensor components (in Voight notation). We can write this index notation in general for any symmetry tensor,
Note that for the variational derivative,
only the first term is important because there are no explicit gradients in . Therefore, we have after multiplying the TDLGD equation by a test function and integrating on both sides, in index notation we have,
Note that we ignore the time derivative as it is handled by another Kernel
. This is our residual contribution for .
Next we need the on-diagonal jacobian contribution,
where is a shape function of the finite element method. To compute the off-diagonal jacobian contributions, we have
Rewriting the strain in terms of the symmetric and antisymmetric derivatives of the elastic displacement, we have
with again using the fact that with the Kronecker product. This Kernel
is hard-coded currently).The residual vector components, in Voight notation for a cubic symmetry parent phase ferroelectric, are,
and
Example Input File Syntax
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Controllable:No
Description:The displacements
- polar_zThe z component of the polarization
C++ Type:std::vector<VariableName>
Controllable:No
Description:The z component of the polarization
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- u_zThe z component of the local elastic displacement
C++ Type:std::vector<VariableName>
Controllable:No
Description:The z component of the local elastic displacement
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- diag_save_inThe name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:The name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- save_inThe name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:The name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (test/tests/electrooptics/BTO_monodomain_T298K_REF.i)
- (test/tests/msca/BFO_P0A0.i)
- (test/tests/topology/A_skyrm.i)
- (tutorial/ferroelectric_domain_wall.i)
- (tutorial/BFO_dwP1A1_100.i)
- (tutorial/BFO_P111_TO_P111b_switch_m1_a1.i)
- (examples/domain_walls/BTO_wall_T298K.i)
- (examples/monodomain/BTO_monodomain_Tdef.i)
- (test/tests/electrooptics/BTO_monodomain_T298K_REFnoEO.i)
- (test/tests/dispersion/genDomain_PzEz.i)
- (test/tests/dispersion/genDomain_PyEz.i)
- (test/tests/film/PTO_film3_T298K.i)
- (examples/films/PZTfilm_e12_T298K_E0.i)
- (test/tests/auxkernels/surface_charge.i)
- (examples/monodomain/PZT_monodomain_Tdef.i)
- (test/tests/dispersion/perturbBTO_PyEz.i)
- (examples/other/PTO_E0.i)
- (test/tests/pbc/pbc.i)
- (test/tests/film/PTO_film3_T298K_noP.i)
- (examples/domain_walls/BTO_90wall_T298K.i)
- (test/tests/msca/BFO_dwP1A1_100.i)
- (test/tests/domain_wall/test_BTO_domain_wall.i)
- (tutorial/film.i)
- (test/tests/pbc/bcc_pbc.i)
- (test/tests/dispersion/perturbBTO_PzEz.i)
- (examples/monodomain/PTO_monodomain_Tdef.i)
- (test/tests/auxkernels/microforce.i)
- (examples/films/PTOfilm_e12_T298K_E0.i)
- (tutorial/BFO_homogeneous_PA.i)
(test/tests/electrooptics/BTO_monodomain_T298K_REF.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 2
ny = 2
nz = 2
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-0.5 -0.5 -0.5'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
[./stripe1]
type = ParsedFunction
value = 0.01*cos(0.08975979010256552*(x)) # 0.08975979010256552 = 2pi/(xmax-xmin)
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.01
max = 0.02
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./stress_xx_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
######################################
##
## Principle change in refractive and
## refractive index components
##
######################################
[./dpn_1]
order = CONSTANT
family = MONOMIAL
[../]
[./dpn_2]
order = CONSTANT
family = MONOMIAL
[../]
[./dpn_3]
order = CONSTANT
family = MONOMIAL
[../]
[./den_1]
order = CONSTANT
family = MONOMIAL
[../]
[./den_2]
order = CONSTANT
family = MONOMIAL
[../]
[./den_3]
order = CONSTANT
family = MONOMIAL
[../]
[./n_1]
order = CONSTANT
family = MONOMIAL
[../]
[./n_2]
order = CONSTANT
family = MONOMIAL
[../]
[./n_3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./dn_p1]
type = PolarOpticChangeInRefractiveIndex
component = 0
variable = dpn_1
execute_on = 'timestep_end'
[../]
[./dn_p2]
type = PolarOpticChangeInRefractiveIndex
component = 1
variable = dpn_2
execute_on = 'timestep_end'
[../]
[./dn_p3]
type = PolarOpticChangeInRefractiveIndex
component = 2
variable = dpn_3
execute_on = 'timestep_end'
[../]
[./dn_e1]
type = ElastoChangeInRefractiveIndex
component = 0
variable = den_1
u_x = u_x
u_y = u_y
u_z = u_z
execute_on = 'timestep_end'
[../]
[./dn_e2]
type = ElastoChangeInRefractiveIndex
component = 1
variable = den_2
u_x = u_x
u_y = u_y
u_z = u_z
execute_on = 'timestep_end'
[../]
[./dn_e3]
type = ElastoChangeInRefractiveIndex
component = 2
variable = den_3
u_x = u_x
u_y = u_y
u_z = u_z
execute_on = 'timestep_end'
[../]
[./n_1_c]
type = ReworkedRefractiveIndex
variable = n_1
elasto = true
electro = false
polar = true
component = 0
var1 = dpn_1
var2 = den_1
execute_on = 'timestep_end'
[../]
[./n_2_c]
type = ReworkedRefractiveIndex
variable = n_2
elasto = true
electro = false
polar = true
component = 1
var1 = dpn_2
var2 = den_2
execute_on = 'timestep_end'
[../]
[./n_3_c]
type = ReworkedRefractiveIndex
variable = n_3
elasto = true
electro = false
polar = true
component = 2
var1 = dpn_3
var2 = den_3
execute_on = 'timestep_end'
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.11 0.045 0.045 -0.11 0.045 -0.11 -0.029 -0.029 -0.029'
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./ref_index]
############################################
##
## Cubic refractive index BTO
## (need correct value)
##
############################################
type = GenericConstantMaterial
prop_names = 'n1 n2 n3 n4 n5 n6'
prop_values = '2.4272 2.4272 2.4272 0.0 0.0 0.0'
[../]
[./po_tensor]
############################################
##
## PO tensor coefficients from
## Bernasconi and Günter
## J. Appl. Phys., 78, 2651 (1995)
##
############################################
type = GenericConstantMaterial
prop_names = 'g1111 g1122 g1212'
prop_values = '0.15 0.038 0.07'
[../]
[./eo_tensor]
############################################
##
## Elastoptic tensor coefficients from
## Bernasconi and Günter
## J. Appl. Phys., 78, 2651 (1995)
##
############################################
type = GenericConstantMaterial
prop_names = 'p1111 p1122 p1212'
prop_values = '0.37 0.11 -0.30'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
permittivity = 0.08854187
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '0 1 2 3 4 5'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
num_steps = 5
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = test_bire
elemental_as_nodal = true
[../]
[]
(test/tests/msca/BFO_P0A0.i)
Nx = 5
Ny = 5
Nz = 5
xMax = 2.0
yMax = 2.0
zMax = 2.0
g11 = 12e-3
g12 = -3.0e-3
g44 = 3.0e-3
h11 = 2.0e-4
h12 = -0.2e-3
h44 = 0.8e-3
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = ${Nx}
ny = ${Ny}
nz = ${Nz}
xmin = 0.0
xmax = ${xMax}
ymin = 0.0
ymax = ${yMax}
zmin = 0.0
zmax = ${zMax}
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
antiphase_A_x = antiphase_A_x
antiphase_A_y = antiphase_A_y
antiphase_A_z = antiphase_A_z
displacements = 'u_x u_y u_z'
potential_E_int = potential_E_int
[]
[Functions]
[./constPm]
type = ParsedFunction
value = -0.54
[../]
[./constPp]
type = ParsedFunction
value = 0.54
[../]
[./constAm]
type = ParsedFunction
value = -7.37
[../]
[./constAp]
type = ParsedFunction
value = 7.37
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constPp
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constPp
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constPm
[../]
[../]
[./antiphase_A_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constAp
[../]
[../]
[./antiphase_A_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constAp
[../]
[../]
[./antiphase_A_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constAm
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e21]
order = CONSTANT
family = MONOMIAL
[../]
[./e02]
order = CONSTANT
family = MONOMIAL
[../]
[./e20]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e21]
type = RankTwoAux
variable = e21
rank_two_tensor = total_strain
index_i = 2
index_j = 1
[../]
[./e20]
type = RankTwoAux
variable = e20
rank_two_tensor = total_strain
index_i = 2
index_j = 0
[../]
[./e02]
type = RankTwoAux
variable = e02
rank_two_tensor = total_strain
index_i = 0
index_j = 2
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./rotostr_ux]
type = RotostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./rotostr_uy]
type = RotostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./rotostr_uz]
type = RotostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
### Operators for the polar field: ###
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./walled2_x]
type = Wall2EnergyDerivative
variable = polar_x
component = 0
[../]
[./walled2_y]
type = Wall2EnergyDerivative
variable = polar_y
component = 1
[../]
[./walled2_z]
type = Wall2EnergyDerivative
variable = polar_z
component = 2
[../]
[./walled_a_x]
type = AFDWallEnergyDerivative
variable = antiphase_A_x
component = 0
[../]
[./walled_a_y]
type = AFDWallEnergyDerivative
variable = antiphase_A_y
component = 1
[../]
[./walled_a_z]
type = AFDWallEnergyDerivative
variable = antiphase_A_z
component = 2
[../]
[./walled2_a_x]
type = AFDWall2EnergyDerivative
variable = antiphase_A_x
component = 0
[../]
[./walled2_a_y]
type = AFDWall2EnergyDerivative
variable = antiphase_A_y
component = 1
[../]
[./walled2_a_z]
type = AFDWall2EnergyDerivative
variable = antiphase_A_z
component = 2
[../]
[./roto_polar_coupled_x]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_x
component = 0
[../]
[./roto_polar_coupled_y]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_y
component = 1
[../]
[./roto_polar_coupled_z]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_z
component = 2
[../]
[./roto_dis_coupled_x]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_x
component = 0
[../]
[./roto_dis_coupled_y]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_y
component = 1
[../]
[./roto_dis_coupled_z]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
#Operators for the AFD field
[./rbed_x]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_x
component = 0
[../]
[./rbed_y]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_y
component = 1
[../]
[./rbed_z]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_z
component = 2
[../]
[./rotostr_dis_coupled_x]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_x
component = 0
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./rotostr_dis_coupled_y]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_y
component = 1
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./rotostr_dis_coupled_z]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_z
component = 2
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
block = '0'
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
block = '0'
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
block = '0'
[../]
[./a_x_time]
type = TimeDerivativeScaled
variable = antiphase_A_x
time_scale = 0.01
block = '0'
[../]
[./a_y_time]
type = TimeDerivativeScaled
variable = antiphase_A_y
time_scale = 0.01
block = '0'
[../]
[./a_z_time]
type = TimeDerivativeScaled
variable = antiphase_A_z
time_scale = 0.01
block = '0'
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[Materials]
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-2.81296 1.72351 2.24147 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./Landau_A]
type = GenericConstantMaterial
prop_names = 'beta1 beta11 beta12 beta111 beta112 beta123 beta1111 beta1112 beta1122 beta1123'
prop_values = '-0.0137763 0.0000349266 0.0000498846 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./P_A_couple]
type = GenericConstantMaterial
prop_names = 't1111 t1122 t1212 t42111111 t24111111 t42111122 t24112222 t42112233 t24112233 t42112211 t24111122 t42111212 t42123312 t24121112 t24121233 t6211111111 t2611111111 t6211111122 t2611222222 t4411111111 t4411112222'
prop_values = '0.012516 0.0180504 -0.036155 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '1.0 ${g11} ${g12} ${g44} 0.0'
[../]
[./Landau_H]
type = GenericConstantMaterial
prop_names = 'H110 H11_H110 H12_H110 H44_H110 H44P_H110'
prop_values = '1.0 ${h11} ${h12} ${h44} 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '295.179 117.567 74.0701'
[../]
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.0603833 0.0111245 -0.0175686'
[../]
[./mat_R]
type = GenericConstantMaterial
prop_names = 'R11 R12 R44'
prop_values = '-0.0000878064 0.0000295306 0.0000627962'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-30.4162 -5.01496 -10.4105'
#the point is the following: use a slightly different definition of Q_ij than Hlinka
[../]
[./mat_r]
type = GenericConstantMaterial
prop_names = 'r11 r12 r44'
prop_values = '-0.0379499 0.00373096 0.0372105'
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '295.179 117.567 117.567 295.179 117.567 295.179 74.0701 74.0701 74.0701'
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./FbP]
type = BulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./FbA]
type = RotoBulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./FcPA]
type = RotoPolarCoupledEnergyEighth
execute_on = 'timestep_end'
[../]
[./FgP]
type = WallEnergy
execute_on = 'timestep_end'
[../]
[./FgA]
type = AFDWallEnergy
execute_on = 'timestep_end'
[../]
[./FcPu]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./FcAu]
type = RotostrictiveCouplingEnergy
execute_on = 'timestep_end'
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./Felu]
type = ElasticEnergy
execute_on = 'timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'FbP FbA FgP FgA FcPA FcPu FcAu Felu Fele'
pp_coefs = ' 1 1 1 1 1 1 1 1 1'
execute_on = 'timestep_end'
##########################################
#
# NOTE: Ferret output is in attojoules
#
##########################################
[../]
[./perc_change]
type = EnergyRatePostprocessor
postprocessor = Ftot
execute_on = 'timestep_end'
dt = dt
[../]
[]
[BCs]
[./Periodic]
[./x]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z antiphase_A_x antiphase_A_y antiphase_A_z'
[../]
[./xyz]
auto_direction = 'x y z'
variable = 'potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalBFOMaterialRVEUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[./kill]
type = Terminator
expression = 'perc_change <= 5.0e-7'
[../]
[]
#=
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 121 1e-8 1e-7 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
scheme = 'bdf2'
dtmin = 1e-13
dtmax = 10.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 25 #usually 10
linear_iteration_ratio = 100
dt = 0.08
growth_factor = 1.1
[../]
num_steps = 2
[]
#=
[Outputs]
print_linear_residuals = false
perf_graph_live = false
[./out]
type = Exodus
file_base = BFO_P0A0
elemental_as_nodal = true
[../]
[]
(test/tests/topology/A_skyrm.i)
[Mesh]
file = exodus_disk_r8_h1.e
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
vol = vol
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
[]
[Functions]
[./parsed_function_x_skyrm]
type = ParsedFunction
value = '-(0.738217-0.00686984*(x^2+y^2)^(0.5)+0.00644497*(x^2+y^2)-0.0188174*(x^2+y^2)^(1.5)+0.00441745*(x^2+y^2)^2-0.000274842*(x^2+y^2)^(5/2))*sin(-0.028395+0.267482*(x^2+y^2)^(0.5)-0.146762*(x^2+y^2)+0.0632932*(x^2+y^2)^(1.5)-0.00790942*(x^2+y^2)^(2)+0.000294936*(x^2+y^2)^(5/2))*sin(atan(y/x))'
[../]
[./parsed_function_y_skyrm]
type = ParsedFunction
value = '(0.738217-0.00686984*(x^2+y^2)^(0.5)+0.00644497*(x^2+y^2)-0.0188174*(x^2+y^2)^(1.5)+0.00441745*(x^2+y^2)^2-0.000274842*(x^2+y^2)^(5/2))*sin(-0.028395+0.267482*(x^2+y^2)^(0.5)-0.146762*(x^2+y^2)+0.0632932*(x^2+y^2)^(1.5)-0.00790942*(x^2+y^2)^(2)+0.000294936*(x^2+y^2)^(5/2))*cos(atan(y/x))'
[../]
[./parsed_function_z_skyrm]
type = ParsedFunction
value = '(0.738217-0.00686984*(x^2+y^2)^(0.5)+0.00644497*(x^2+y^2)-0.0188174*(x^2+y^2)^(1.5)+0.00441745*(x^2+y^2)^2-0.000274842*(x^2+y^2)^(5/2))*cos(-0.028395+0.267482*(x^2+y^2)^(0.5)-0.146762*(x^2+y^2)+0.0632932*(x^2+y^2)^(1.5)-0.00790942*(x^2+y^2)^(2)+0.000294936*(x^2+y^2)^(5/2))'
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = parsed_function_x_skyrm
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = parsed_function_y_skyrm
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = parsed_function_z_skyrm
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.110448 0.0451767 -0.115654'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -6.28'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
u_x = u_x
u_y = u_y
u_z = u_z
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
u_x = u_x
u_y = u_y
u_z = u_z
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
u_x = u_x
u_y = u_y
u_z = u_z
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[BCs]
[./top_electrode_top]
type = DirichletBC
variable = 'potential_E_int'
value = 0.0001
boundary = '2'
[../]
[./top_electrode_bottom]
type = DirichletBC
variable = 'potential_E_int'
value = 0.0001
boundary = '3'
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fb]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fw]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Fela]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fc]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
u_x = u_x
u_y = u_y
u_z = u_z
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'Fb Fw Fc Fele'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftot
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 1e-5
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-4'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 8.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
growth_factor = 1.25
linear_iteration_ratio = 1000
dt = 0.000008
[../]
verbose = true
num_steps = 1
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_bto_skyrm_disk
elemental_as_nodal = true
[../]
[]
(tutorial/ferroelectric_domain_wall.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
nx = 480
ny = 1
nz = 1
xmin = -60.0
xmax = 60.0
ymin = -0.25
ymax = 0.25
zmin = -0.25
zmax = 0.25
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-60.0 -0.25 -0.25'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
[./stripe1]
type = ParsedFunction
value = 0.1*cos(0.05235987755*(x)) #2pi/L = 0.10471975512
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'stripe1'
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./walled2_x]
type = Wall2EnergyDerivative
variable = polar_x
component = 0
[../]
[./walled2_y]
type = Wall2EnergyDerivative
variable = polar_y
component = 1
[../]
[./walled2_z]
type = Wall2EnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '0.11 -0.045 0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '14.2 -0.74 1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '0.11 -0.045 -0.045 0.11 -0.045 0.11 0.029 0.029 0.029'
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total
## energy decomposed into linear combinations
## of the different physics.
##
###############################################
[./Fb]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fw]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Fela]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fc]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'Fb Fw Fc Fele'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftot
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the
## energy difference between subsequent time
## steps is lower than 1e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
growth_factor = 1.2
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
############################################
##
## Output options
##
############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_ferroelectric_domain_wall
elemental_as_nodal = true
execute_on = 'timestep_end'
interval = 2
[../]
[]
(tutorial/BFO_dwP1A1_100.i)
Nx = 250
Ny = 1
Nz = 1
xMax = 31.41592653589793
yMax = 1.0
zMax = 1.0
freq = 0.2
g11 = 12e-3
g12 = -3.0e-3
g44 = 3.0e-3
h11 = 2.0e-4
h12 = -0.2e-3
h44 = 0.8e-3
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = ${Nx}
ny = ${Ny}
nz = ${Nz}
xmin = 0.0
xmax = ${xMax}
ymin = 0.0
ymax = ${yMax}
zmin = 0.0
zmax = ${zMax}
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
antiphase_A_x = antiphase_A_x
antiphase_A_y = antiphase_A_y
antiphase_A_z = antiphase_A_z
displacements = 'u_x u_y u_z'
potential_E_int = potential_E_int
[]
[Functions]
[./stripeP1]
type = ParsedFunction
value = 0.54*cos(${freq}*(x))
[../]
[./stripeP2]
type = ParsedFunction
value = -0.54*cos(${freq}*(x))
[../]
[./stripeA1]
type = ParsedFunction
value = 7.37*cos(${freq}*(x))
[../]
[./stripeA2]
type = ParsedFunction
value = -7.37*cos(${freq}*(x))
[../]
[./constPm]
type = ParsedFunction
value = -0.54
[../]
[./constPp]
type = ParsedFunction
value = 0.54
[../]
[./constAm]
type = ParsedFunction
value = -7.37
[../]
[./constAp]
type = ParsedFunction
value = 7.37
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constPp
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constPp
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = stripeP1
[../]
[../]
[./antiphase_A_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constAp
[../]
[../]
[./antiphase_A_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constAp
[../]
[../]
[./antiphase_A_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = stripeA1
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e21]
order = CONSTANT
family = MONOMIAL
[../]
[./e02]
order = CONSTANT
family = MONOMIAL
[../]
[./e20]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./rotostr_ux]
type = RotostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./rotostr_uy]
type = RotostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./rotostr_uz]
type = RotostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
### Operators for the polar field: ###
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./walled2_x]
type = Wall2EnergyDerivative
variable = polar_x
component = 0
[../]
[./walled2_y]
type = Wall2EnergyDerivative
variable = polar_y
component = 1
[../]
[./walled2_z]
type = Wall2EnergyDerivative
variable = polar_z
component = 2
[../]
[./walled_a_x]
type = AFDWallEnergyDerivative
variable = antiphase_A_x
component = 0
[../]
[./walled_a_y]
type = AFDWallEnergyDerivative
variable = antiphase_A_y
component = 1
[../]
[./walled_a_z]
type = AFDWallEnergyDerivative
variable = antiphase_A_z
component = 2
[../]
[./walled2_a_x]
type = AFDWall2EnergyDerivative
variable = antiphase_A_x
component = 0
[../]
[./walled2_a_y]
type = AFDWall2EnergyDerivative
variable = antiphase_A_y
component = 1
[../]
[./walled2_a_z]
type = AFDWall2EnergyDerivative
variable = antiphase_A_z
component = 2
[../]
[./roto_polar_coupled_x]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_x
component = 0
[../]
[./roto_polar_coupled_y]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_y
component = 1
[../]
[./roto_polar_coupled_z]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_z
component = 2
[../]
[./roto_dis_coupled_x]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_x
component = 0
[../]
[./roto_dis_coupled_y]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_y
component = 1
[../]
[./roto_dis_coupled_z]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
#Operators for the AFD field
[./rbed_x]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_x
component = 0
[../]
[./rbed_y]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_y
component = 1
[../]
[./rbed_z]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_z
component = 2
[../]
[./rotostr_dis_coupled_x]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_x
component = 0
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./rotostr_dis_coupled_y]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_y
component = 1
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./rotostr_dis_coupled_z]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_z
component = 2
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
block = '0'
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
block = '0'
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
block = '0'
[../]
[./a_x_time]
type = TimeDerivativeScaled
variable = antiphase_A_x
time_scale = 0.01
block = '0'
[../]
[./a_y_time]
type = TimeDerivativeScaled
variable = antiphase_A_y
time_scale = 0.01
block = '0'
[../]
[./a_z_time]
type = TimeDerivativeScaled
variable = antiphase_A_z
time_scale = 0.01
block = '0'
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e21]
type = RankTwoAux
variable = e21
rank_two_tensor = total_strain
index_i = 2
index_j = 1
[../]
[./e20]
type = RankTwoAux
variable = e20
rank_two_tensor = total_strain
index_i = 2
index_j = 0
[../]
[./e02]
type = RankTwoAux
variable = e02
rank_two_tensor = total_strain
index_i = 0
index_j = 2
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[Materials]
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-2.81296 1.72351 2.24147 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./Landau_A]
type = GenericConstantMaterial
prop_names = 'beta1 beta11 beta12 beta111 beta112 beta123 beta1111 beta1112 beta1122 beta1123'
prop_values = '-0.0137763 0.0000349266 0.0000498846 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./P_A_couple]
type = GenericConstantMaterial
prop_names = 't1111 t1122 t1212 t42111111 t24111111 t42111122 t24112222 t42112233 t24112233 t42112211 t24111122 t42111212 t42123312 t24121112 t24121233 t6211111111 t2611111111 t6211111122 t2611222222 t4411111111 t4411112222'
prop_values = '0.012516 0.0180504 -0.036155 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '1.0 ${g11} ${g12} ${g44} 0.0'
[../]
[./Landau_H]
type = GenericConstantMaterial
prop_names = 'H110 H11_H110 H12_H110 H44_H110 H44P_H110'
prop_values = '1.0 ${h11} ${h12} ${h44} 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '295.179 117.567 74.0701'
[../]
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.0603833 0.0111245 -0.0175686'
[../]
[./mat_R]
type = GenericConstantMaterial
prop_names = 'R11 R12 R44'
prop_values = '-0.0000878064 0.0000295306 0.0000627962'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-30.4162 -5.01496 -10.4105'
[../]
[./mat_r]
type = GenericConstantMaterial
prop_names = 'r11 r12 r44'
prop_values = '-0.0379499 0.00373096 0.0372105'
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '295.179 117.567 117.567 295.179 117.567 295.179 74.0701 74.0701 74.0701'
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./FbP]
type = BulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./FbA]
type = RotoBulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./FcPA]
type = RotoPolarCoupledEnergyEighth
execute_on = 'timestep_end'
[../]
[./FgP]
type = WallEnergy
execute_on = 'timestep_end'
[../]
[./FgA]
type = AFDWallEnergy
execute_on = 'timestep_end'
[../]
[./FcPu]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./FcAu]
type = RotostrictiveCouplingEnergy
execute_on = 'timestep_end'
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./Felu]
type = ElasticEnergy
execute_on = 'timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'FbP FbA FgP FgA FcPA FcPu FcAu Felu Fele'
pp_coefs = ' 1 1 1 1 1 1 1 1 1'
execute_on = 'timestep_end'
##########################################
#
# NOTE: Ferret output is in attojoules
#
##########################################
[../]
[./perc_change]
type = EnergyRatePostprocessor
postprocessor = Ftot
execute_on = 'timestep_end'
dt = dt
[../]
[./elapsed]
type = PerfGraphData
section_name = "Root" # for profiling the problem
data_type = total
[../]
[]
[BCs]
[./Periodic]
[./x]
auto_direction = 'x'
variable = 'u_x u_y u_z polar_x polar_y polar_z antiphase_A_x antiphase_A_y antiphase_A_z'
[../]
[./xyz]
auto_direction = 'x y z'
variable = 'potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalBFOMaterialRVEUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[./kill]
type = Terminator
expression = 'perc_change <= 5.0e-7'
[../]
[]
#=
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 121 1e-8 1e-7 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
scheme = 'bdf2'
dtmin = 1e-13
dtmax = 10.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 25 #usually 10
linear_iteration_ratio = 100
dt = 0.08
growth_factor = 1.1
[../]
num_steps = 1000
[]
[Outputs]
print_linear_residuals = false
perf_graph_live = false
[./out]
type = Exodus
file_base = BFO_dwP1A1_100
elemental_as_nodal = true
[../]
[]
(tutorial/BFO_P111_TO_P111b_switch_m1_a1.i)
alphadef = 0.003
endtdef = 0.00223
efreq = 600
Eadef = -1.8e3
[Mesh]
[fileload]
type = FileMeshGenerator
file = out_BFOMDL_P111A111_m1.e
use_for_exodus_restart = true
[]
[]
[GlobalParams]
len_scale = 1.0
mag1_x = mag1_x
mag1_y = mag1_y
mag1_z = mag1_z
mag2_x = mag2_x
mag2_y = mag2_y
mag2_z = mag2_z
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
antiphase_A_x = antiphase_A_x
antiphase_A_y = antiphase_A_y
antiphase_A_z = antiphase_A_z
displacements = 'u_x u_y u_z'
E_x = E_x
E_y = E_y
E_z = E_z
[]
[Functions]
[./bc_func_1]
type = ParsedFunction
value = 'st'
vars = 'st '
vals = '5e2'
[../]
[]
[Materials]
[./constants] # Constants used in other material properties
type = GenericConstantMaterial
prop_names = ' alpha De D0 g0mu0Ms g0 K1 K1c Kt '
prop_values = '0.003 3.7551 0.003 48291.9 48291.9 -5.0068 -0.00550748 -0.000365997 '
[../]
[./a_long]
type = GenericFunctionMaterial
prop_names = 'alpha_long'
prop_values = 'bc_func_1'
[../]
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-2.81296e3 1.72351e3 2.24147e3 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./Landau_A]
type = GenericConstantMaterial
prop_names = 'beta1 beta11 beta12 beta111 beta112 beta123 beta1111 beta1112 beta1122 beta1123'
prop_values = '-0.0137763e3 0.0000349266e3 0.0000498846e3 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./P_A_couple]
type = GenericConstantMaterial
prop_names = 't1111 t1122 t1212 t42111111 t24111111 t42111122 t24112222 t42112233 t24112233 t42112211 t24111122 t42111212 t42123312 t24121112 t24121233 t6211111111 t2611111111 t6211111122 t2611222222 t4411111111 t4411112222'
prop_values = '0.012516e3 0.0180504e3 -0.036155e3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '295.179e3 117.567e3 74.0701e3'
[../]
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.0603833 0.0111245 -0.0175686'
[../]
[./mat_R]
type = GenericConstantMaterial
prop_names = 'R11 R12 R44'
prop_values = '-0.0000878064 0.0000295306 0.0000627962'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-30.4162e3 -5.01496e3 -10.4105e3'
#the point is the following: use a slightly different definition of Q_ij than Hlinka
[../]
[./mat_r]
type = GenericConstantMaterial
prop_names = 'r11 r12 r44'
prop_values = '-0.0379499e3 0.00373096e3 0.0372105e3'
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '295.179e3 117.567e3 117.567e3 295.179e3 117.567e3 295.179e3 74.0701e3 74.0701e3 74.0701e3'
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.00008854187'
[../]
[]
[Variables]
[./mag1_x]
order = FIRST
family = LAGRANGE
initial_from_file_var = mag1_x
initial_from_file_timestep = 'LATEST'
[../]
[./mag1_y]
order = FIRST
family = LAGRANGE
initial_from_file_var = mag1_y
initial_from_file_timestep = 'LATEST'
[../]
[./mag1_z]
order = FIRST
family = LAGRANGE
initial_from_file_var = mag1_z
initial_from_file_timestep = 'LATEST'
[../]
[./mag2_x]
order = FIRST
family = LAGRANGE
initial_from_file_var = mag2_x
initial_from_file_timestep = 'LATEST'
[../]
[./mag2_y]
order = FIRST
family = LAGRANGE
initial_from_file_var = mag2_y
initial_from_file_timestep = 'LATEST'
[../]
[./mag2_z]
order = FIRST
family = LAGRANGE
initial_from_file_var = mag2_z
initial_from_file_timestep = 'LATEST'
[../]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_x
initial_from_file_timestep = 'LATEST'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_y
initial_from_file_timestep = 'LATEST'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_z
initial_from_file_timestep = 'LATEST'
[../]
[./antiphase_A_x]
order = FIRST
family = LAGRANGE
initial_from_file_var = antiphase_A_x
initial_from_file_timestep = 'LATEST'
[../]
[./antiphase_A_y]
order = FIRST
family = LAGRANGE
initial_from_file_var = antiphase_A_y
initial_from_file_timestep = 'LATEST'
[../]
[./antiphase_A_z]
order = FIRST
family = LAGRANGE
initial_from_file_var = antiphase_A_z
initial_from_file_timestep = 'LATEST'
[../]
[]
[AuxVariables]
[./mag1_s]
order = FIRST
family = LAGRANGE
[../]
[./mag2_s]
order = FIRST
family = LAGRANGE
[../]
[./Neel_L_x]
order = FIRST
family = LAGRANGE
[../]
[./Neel_L_y]
order = FIRST
family = LAGRANGE
[../]
[./Neel_L_z]
order = FIRST
family = LAGRANGE
[../]
[./SSMag_x]
order = FIRST
family = LAGRANGE
[../]
[./SSMag_y]
order = FIRST
family = LAGRANGE
[../]
[./SSMag_z]
order = FIRST
family = LAGRANGE
[../]
[./ph]
order = FIRST
family = LAGRANGE
[../]
[./th1]
order = FIRST
family = LAGRANGE
[../]
[./th2]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e21]
order = CONSTANT
family = MONOMIAL
[../]
[./e02]
order = CONSTANT
family = MONOMIAL
[../]
[./e20]
order = CONSTANT
family = MONOMIAL
[../]
[./E_x]
order = CONSTANT
family = MONOMIAL
[../]
[./E_y]
order = CONSTANT
family = MONOMIAL
[../]
[./E_z]
order = CONSTANT
family = MONOMIAL
[../]
[./sublat1_phi]
order = FIRST
family = LAGRANGE
[../]
[./sublat1_th]
order = FIRST
family = LAGRANGE
[../]
[./sublat2_phi]
order = FIRST
family = LAGRANGE
[../]
[./sublat2_th]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./rotostr_ux]
type = RotostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./rotostr_uy]
type = RotostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./rotostr_uz]
type = RotostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
### Operators for the polar field: ###
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./roto_polar_coupled_x]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_x
component = 0
[../]
[./roto_polar_coupled_y]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_y
component = 1
[../]
[./roto_polar_coupled_z]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_z
component = 2
[../]
[./roto_dis_coupled_x]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_x
component = 0
[../]
[./roto_dis_coupled_y]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_y
component = 1
[../]
[./roto_dis_coupled_z]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
#Operators for the AFD field
[./rbed_x]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_x
component = 0
[../]
[./rbed_y]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_y
component = 1
[../]
[./rbed_z]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_z
component = 2
[../]
[./rotostr_dis_coupled_x]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_x
component = 0
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./rotostr_dis_coupled_y]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_y
component = 1
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./rotostr_dis_coupled_z]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_z
component = 2
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./polar_electric_px]
type = PolarElectricPStrongEConst
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrongEConst
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrongEConst
variable = polar_z
component = 2
[../]
#---------------------------------------#
# #
# Time dependence #
# #
#---------------------------------------#
[./mag1_x_time]
type = TimeDerivative
variable = mag1_x
[../]
[./mag1_y_time]
type = TimeDerivative
variable = mag1_y
[../]
[./mag1_z_time]
type = TimeDerivative
variable = mag1_z
[../]
[./mag2_x_time]
type = TimeDerivative
variable = mag2_x
[../]
[./mag2_y_time]
type = TimeDerivative
variable = mag2_y
[../]
[./mag2_z_time]
type = TimeDerivative
variable = mag2_z
[../]
#---------------------------------------#
# #
# AFM sublattice exchange #
# #
#---------------------------------------#
[./afmex1_x]
type = AFMSublatticeSuperexchange
variable = mag1_x
mag_sub = 0
component = 0
[../]
[./afmex1_y]
type = AFMSublatticeSuperexchange
variable = mag1_y
mag_sub = 0
component = 1
[../]
[./afmex1_z]
type = AFMSublatticeSuperexchange
variable = mag1_z
mag_sub = 0
component = 2
[../]
[./afmex2_x]
type = AFMSublatticeSuperexchange
variable = mag2_x
mag_sub = 1
component = 0
[../]
[./afmex2_y]
type = AFMSublatticeSuperexchange
variable = mag2_y
mag_sub = 1
component = 1
[../]
[./afmex2_z]
type = AFMSublatticeSuperexchange
variable = mag2_z
mag_sub = 1
component = 2
[../]
#---------------------------------------#
# #
# AFM sublattice DMI #
# !isStronglyCoupled=true #
#---------------------------------------#
[./afmdmi1_x]
type = AFMSublatticeDMInteractionSC
variable = mag1_x
mag_sub = 0
component = 0
[../]
[./afmdmi1_y]
type = AFMSublatticeDMInteractionSC
variable = mag1_y
mag_sub = 0
component = 1
[../]
[./afmdmi1_z]
type = AFMSublatticeDMInteractionSC
variable = mag1_z
mag_sub = 0
component = 2
[../]
[./afmdmi2_x]
type = AFMSublatticeDMInteractionSC
variable = mag2_x
mag_sub = 1
component = 0
[../]
[./afmdmi2_y]
type = AFMSublatticeDMInteractionSC
variable = mag2_y
mag_sub = 1
component = 1
[../]
[./afmdmi2_z]
type = AFMSublatticeDMInteractionSC
variable = mag2_z
mag_sub = 1
component = 2
[../]
#---------------------------------------#
# #
# Magnetocrystalline anisotropy for #
# the AFM sublattice in easy-plane #
# !isStronglyCoupled=true #
#---------------------------------------#
[./afma1_x]
type = AFMEasyPlaneAnisotropySC
variable = mag1_x
mag_sub = 0
component = 0
[../]
[./afma1_y]
type = AFMEasyPlaneAnisotropySC
variable = mag1_y
mag_sub = 0
component = 1
[../]
[./afma1_z]
type = AFMEasyPlaneAnisotropySC
variable = mag1_z
mag_sub = 0
component = 2
[../]
[./afma2_x]
type = AFMEasyPlaneAnisotropySC
variable = mag2_x
mag_sub = 1
component = 0
[../]
[./afma2_y]
type = AFMEasyPlaneAnisotropySC
variable = mag2_y
mag_sub = 1
component = 1
[../]
[./afma2_z]
type = AFMEasyPlaneAnisotropySC
variable = mag2_z
mag_sub = 1
component = 2
[../]
#---------------------------------------#
# #
# Single-ion anisotropy environment #
# for the AFM sublattice in the #
# degenerate easy-plane #
# !isStronglyCoupled=true #
#---------------------------------------#
[./afmsia1_x]
type = AFMSingleIonCubicSixthAnisotropySC
variable = mag1_x
mag_sub = 0
component = 0
[../]
[./afmsia1_y]
type = AFMSingleIonCubicSixthAnisotropySC
variable = mag1_y
mag_sub = 0
component = 1
[../]
[./afmsia1_z]
type = AFMSingleIonCubicSixthAnisotropySC
variable = mag1_z
mag_sub = 0
component = 2
[../]
[./afmsia2_x]
type = AFMSingleIonCubicSixthAnisotropySC
variable = mag2_x
mag_sub = 1
component = 0
[../]
[./afmsia2_y]
type = AFMSingleIonCubicSixthAnisotropySC
variable = mag2_y
mag_sub = 1
component = 1
[../]
[./afmsia2_z]
type = AFMSingleIonCubicSixthAnisotropySC
variable = mag2_z
mag_sub = 1
component = 2
[../]
#---------------------------------------#
# #
# LLB constraint terms #
# #
#---------------------------------------#
[./llb1_x]
type = LongitudinalLLB
variable = mag1_x
mag_x = mag1_x
mag_y = mag1_y
mag_z = mag1_z
component = 0
[../]
[./llb1_y]
type = LongitudinalLLB
variable = mag1_y
mag_x = mag1_x
mag_y = mag1_y
mag_z = mag1_z
component = 1
[../]
[./llb1_z]
type = LongitudinalLLB
variable = mag1_z
mag_x = mag1_x
mag_y = mag1_y
mag_z = mag1_z
component = 2
[../]
[./llb2_x]
type = LongitudinalLLB
variable = mag2_x
mag_x = mag2_x
mag_y = mag2_y
mag_z = mag2_z
component = 0
[../]
[./llb2_y]
type = LongitudinalLLB
variable = mag2_y
mag_x = mag2_x
mag_y = mag2_y
mag_z = mag2_z
component = 1
[../]
[./llb2_z]
type = LongitudinalLLB
variable = mag2_z
mag_x = mag2_x
mag_y = mag2_y
mag_z = mag2_z
component = 2
[../]
#---------------------------------------#
# #
# Time dependence #
# #
#---------------------------------------#
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 0.005
block = '0'
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 0.005
block = '0'
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 0.005
block = '0'
[../]
[./a_x_time]
type = TimeDerivativeScaled
variable = antiphase_A_x
time_scale = 0.00005
block = '0'
[../]
[./a_y_time]
type = TimeDerivativeScaled
variable = antiphase_A_y
time_scale = 0.00005
block = '0'
[../]
[./a_z_time]
type = TimeDerivativeScaled
variable = antiphase_A_z
time_scale = 0.00005
block = '0'
[../]
[]
[AuxKernels]
[./mag1_mag]
type = VectorMag
variable = mag1_s
vector_x = mag1_x
vector_y = mag1_y
vector_z = mag1_z
execute_on = 'initial timestep_end final'
[../]
[./mag2_mag]
type = VectorMag
variable = mag2_s
vector_x = mag2_x
vector_y = mag2_y
vector_z = mag2_z
execute_on = 'initial timestep_end final'
[../]
[./Neel_Lx]
type = VectorDiffOrSum
variable = Neel_L_x
var1 = mag1_x
var2 = mag2_x
diffOrSum = 0
execute_on = 'initial timestep_end final'
[../]
[./Neel_Ly]
type = VectorDiffOrSum
variable = Neel_L_y
var1 = mag1_y
var2 = mag2_y
diffOrSum = 0
execute_on = 'initial timestep_end final'
[../]
[./Neel_Lz]
type = VectorDiffOrSum
variable = Neel_L_z
var1 = mag1_z
var2 = mag2_z
diffOrSum = 0
execute_on = 'initial timestep_end final'
[../]
[./smallSignalMag_x]
type = VectorDiffOrSum
variable = SSMag_x
var1 = mag1_x
var2 = mag2_x
diffOrSum = 1
execute_on = 'initial timestep_end final'
[../]
[./smallSignalMag_y]
type = VectorDiffOrSum
variable = SSMag_y
var1 = mag1_y
var2 = mag2_y
diffOrSum = 1
execute_on = 'initial timestep_end final'
[../]
[./smallSignalMag_z]
type = VectorDiffOrSum
variable = SSMag_z
var1 = mag1_z
var2 = mag2_z
diffOrSum = 1
execute_on = 'initial timestep_end final'
[../]
[./phc]
type = AngleBetweenTwoVectors
variable = ph
var1x = mag1_x
var1y = mag1_y
var1z = mag1_z
var2x = mag2_x
var2y = mag2_y
var2z = mag2_z
execute_on = 'initial timestep_end final'
[../]
[./th1c]
type = AngleBetweenTwoVectors
variable = th1
var1x = mag1_x
var1y = mag1_y
var1z = mag1_z
var2x = polar_x
var2y = polar_y
var2z = polar_z
execute_on = 'initial timestep_end final'
[../]
[./th2c]
type = AngleBetweenTwoVectors
variable = th2
var1x = mag2_x
var1y = mag2_y
var1z = mag2_z
var2x = polar_x
var2y = polar_y
var2z = polar_z
execute_on = 'initial timestep_end final'
[../]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e21]
type = RankTwoAux
variable = e21
rank_two_tensor = total_strain
index_i = 2
index_j = 1
[../]
[./e20]
type = RankTwoAux
variable = e20
rank_two_tensor = total_strain
index_i = 2
index_j = 0
[../]
[./e02]
type = RankTwoAux
variable = e02
rank_two_tensor = total_strain
index_i = 0
index_j = 2
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./ez]
type = HarmonicFieldAux
variable = E_z
amplitude = ${Eadef}
correction = 1.0
frequency = ${efreq}
tshift = 0.0
ton = 0.0
toff = 0.000944
execute_on = 'initial timestep_end final'
[../]
[./mcsublat1_phi]
type = SphericalCoordinateVector
variable = sublat1_phi
component = 0
var1x = mag1_x
var1y = mag1_y
var1z = mag1_z
execute_on = 'initial timestep_end final'
[../]
[./mcsublat1_th]
type = SphericalCoordinateVector
variable = sublat1_th
component = 1
var1x = mag1_x
var1y = mag1_y
var1z = mag1_z
execute_on = 'initial timestep_end final'
[../]
[./mcsublat2_phi]
type = SphericalCoordinateVector
variable = sublat2_phi
component = 0
var1x = mag2_x
var1y = mag2_y
var1z = mag2_z
execute_on = 'initial timestep_end final'
[../]
[./mcsublat2_th]
type = SphericalCoordinateVector
variable = sublat2_th
component = 1
var1x = mag2_x
var1y = mag2_y
var1z = mag2_z
execute_on = 'initial timestep_end final'
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z antiphase_A_x antiphase_A_y antiphase_A_z mag1_x mag1_y mag1_z mag2_x mag2_y mag2_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
#---------------------------------------#
# #
# Average Mk = |m_k| and along #
# other directions #
# #
#---------------------------------------#
[./M1]
type = ElementAverageValue
variable = mag1_s
execute_on = 'initial timestep_end final'
[../]
[./M2]
type = ElementAverageValue
variable = mag2_s
execute_on = 'initial timestep_end final'
[../]
[./<m1x>]
type = ElementAverageValue
variable = mag1_x
execute_on = 'initial timestep_end final'
[../]
[./<m1y>]
type = ElementAverageValue
variable = mag1_y
execute_on = 'initial timestep_end final'
[../]
[./<m1z>]
type = ElementAverageValue
variable = mag1_z
execute_on = 'initial timestep_end final'
[../]
[./<m2x>]
type = ElementAverageValue
variable = mag2_x
execute_on = 'initial timestep_end final'
[../]
[./<m2y>]
type = ElementAverageValue
variable = mag2_y
execute_on = 'initial timestep_end final'
[../]
[./<m2z>]
type = ElementAverageValue
variable = mag2_z
execute_on = 'initial timestep_end final'
[../]
[./<Lx>]
type = ElementAverageValue
variable = Neel_L_x
execute_on = 'initial timestep_end final'
[../]
[./<Ly>]
type = ElementAverageValue
variable = Neel_L_y
execute_on = 'initial timestep_end final'
[../]
[./<Lz>]
type = ElementAverageValue
variable = Neel_L_z
execute_on = 'initial timestep_end final'
[../]
[./<SSmx>]
type = ElementAverageValue
variable = SSMag_x
execute_on = 'initial timestep_end final'
[../]
[./<SSmy>]
type = ElementAverageValue
variable = SSMag_y
execute_on = 'initial timestep_end final'
[../]
[./<SSmz>]
type = ElementAverageValue
variable = SSMag_z
execute_on = 'initial timestep_end final'
[../]
[./<ph>]
type = ElementAverageValue
variable = ph
execute_on = 'initial timestep_end final'
[../]
[./<th1>]
type = ElementAverageValue
variable = th1
execute_on = 'initial timestep_end final'
[../]
[./<th2>]
type = ElementAverageValue
variable = th2
execute_on = 'initial timestep_end final'
[../]
[./<sl1phi>]
type = ElementAverageValue
variable = sublat1_phi
execute_on = 'initial timestep_end final'
[../]
[./<sl1th>]
type = ElementAverageValue
variable = sublat1_th
execute_on = 'initial timestep_end final'
[../]
[./<sl2phi>]
type = ElementAverageValue
variable = sublat2_phi
execute_on = 'initial timestep_end final'
[../]
[./<sl2th>]
type = ElementAverageValue
variable = sublat2_th
execute_on = 'initial timestep_end final'
[../]
#---------------------------------------#
# #
# Calculate exchange energy of #
# the magnetic body #
# #
#---------------------------------------#
[./FafmSLexch]
type = AFMSublatticeSuperexchangeEnergy
execute_on = 'initial timestep_end final'
mag1_x = mag1_x
mag1_y = mag1_y
mag1_z = mag1_z
mag2_x = mag2_x
mag2_y = mag2_y
mag2_z = mag2_z
energy_scale = 6241.51
[../]
[./FafmSLdmi]
type = AFMSublatticeDMInteractionEnergy
execute_on = 'initial timestep_end final'
energy_scale = 6241.51
[../]
#---------------------------------------#
# #
# Calculate excess energy from missed #
# LLB targets #
# #
#---------------------------------------#
[./Fllb1]
type = MagneticExcessLLBEnergy
mag_x = mag1_x
mag_y = mag1_y
mag_z = mag1_z
execute_on = 'initial timestep_end final'
[../]
[./Fllb2]
type = MagneticExcessLLBEnergy
mag_x = mag2_x
mag_y = mag2_y
mag_z = mag2_z
execute_on = 'initial timestep_end final'
[../]
#---------------------------------------#
# #
# Calculate the anisotropy energy #
# #
#---------------------------------------#
[./Fa1]
type = AFMEasyPlaneAnisotropyEnergy
execute_on = 'initial timestep_end final'
mag_x = mag1_x
mag_y = mag1_y
mag_z = mag1_z
energy_scale = 6241.51
[../]
[./Fa2]
type = AFMEasyPlaneAnisotropyEnergy
execute_on = 'initial timestep_end final'
mag_x = mag2_x
mag_y = mag2_y
mag_z = mag2_z
energy_scale = 6241.51
[../]
[./Fsia1]
type = AFMSingleIonCubicSixthAnisotropyEnergy
execute_on = 'initial timestep_end final'
mag_x = mag1_x
mag_y = mag1_y
mag_z = mag1_z
energy_scale = 6241.51
[../]
[./Fsia2]
type = AFMSingleIonCubicSixthAnisotropyEnergy
execute_on = 'initial timestep_end final'
mag_x = mag2_x
mag_y = mag2_y
mag_z = mag2_z
energy_scale = 6241.51
[../]
#---------------------------------------#
# #
# add all the energy contributions #
# and calculate their percent change #
# #
#---------------------------------------#
[./FtotMAG]
type = LinearCombinationPostprocessor
pp_names = 'FafmSLexch FafmSLdmi Fa1 Fa2 Fsia1 Fsia2'
pp_coefs = ' 1.0 1.0 1.0 1.0 1.0 1.0'
execute_on = 'initial timestep_end final'
[../]
[./FtotLLB]
type = LinearCombinationPostprocessor
pp_names = 'Fllb1 Fllb2'
pp_coefs = ' 1.0 1.0'
execute_on = 'initial timestep_end final'
[../]
[./Px]
type = ElementAverageValue
variable = polar_x
execute_on = 'initial timestep_end final'
[../]
[./Py]
type = ElementAverageValue
variable = polar_y
execute_on = 'initial timestep_end final'
[../]
[./Pz]
type = ElementAverageValue
variable = polar_z
execute_on = 'initial timestep_end final'
[../]
[./Ax]
type = ElementAverageValue
variable = antiphase_A_x
execute_on = 'initial timestep_end final'
[../]
[./Ay]
type = ElementAverageValue
variable = antiphase_A_y
execute_on = 'initial timestep_end final'
[../]
[./Az]
type = ElementAverageValue
variable = antiphase_A_z
execute_on = 'initial timestep_end final'
[../]
[./e00]
type = ElementAverageValue
variable = e00
execute_on = 'initial timestep_end final'
[../]
[./e11]
type = ElementAverageValue
variable = e11
execute_on = 'initial timestep_end final'
[../]
[./e22]
type = ElementAverageValue
variable = e22
execute_on = 'initial timestep_end final'
[../]
[./e01]
type = ElementAverageValue
variable = e01
execute_on = 'initial timestep_end final'
[../]
[./e12]
type = ElementAverageValue
variable = e12
execute_on = 'initial timestep_end final'
[../]
[./e02]
type = ElementAverageValue
variable = e02
execute_on = 'initial timestep_end final'
[../]
[./Ez]
type = ElementAverageValue
variable = E_z
execute_on = 'initial timestep_end final'
[../]
[./dt]
type = TimestepSize
[../]
[./FbP]
type = BulkEnergyEighth
execute_on = 'initial timestep_end final'
energy_scale = 6.24151
[../]
[./FbA]
type = RotoBulkEnergyEighth
execute_on = 'initial timestep_end final'
energy_scale = 6.24151
[../]
[./FcPA]
type = RotoPolarCoupledEnergyEighth
execute_on = 'initial timestep_end final'
energy_scale = 6.24151
[../]
[./FcPu]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end final'
energy_scale = 6.24151
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./FcAu]
type = RotostrictiveCouplingEnergy
execute_on = 'initial timestep_end final'
energy_scale = 6.24151
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./Felu]
type = ElasticEnergy
execute_on = 'initial timestep_end final'
energy_scale = 6.24151
[../]
[./scSSMag_x]
type = LinearCombinationPostprocessor
pp_names = '<SSmx>'
pp_coefs = ' 100 '
execute_on = 'initial timestep_end final'
[../]
[./scSSMag_y]
type = LinearCombinationPostprocessor
pp_names = '<SSmy>'
pp_coefs = ' 100 '
execute_on = 'initial timestep_end final'
[../]
[./scSSMag_z]
type = LinearCombinationPostprocessor
pp_names = '<SSmz>'
pp_coefs = ' 100 '
execute_on = 'initial timestep_end final'
[../]
[./rA_x]
type = LinearCombinationPostprocessor
pp_names = 'Ax'
pp_coefs = '0.017453277'
execute_on = 'initial timestep_end final'
[../]
[./rA_y]
type = LinearCombinationPostprocessor
pp_names = 'Ay'
pp_coefs = '0.017453277'
execute_on = 'initial timestep_end final'
[../]
[./rA_z]
type = LinearCombinationPostprocessor
pp_names = 'Az'
pp_coefs = '0.017453277'
execute_on = 'initial timestep_end final'
[../]
[./FtotFER]
type = LinearCombinationPostprocessor
pp_names = 'FbP FbA FcPA FcPu FcAu Felu'
pp_coefs = ' 1 1 1 1 1 1 '
execute_on = 'initial timestep_end final'
##########################################
#
# NOTE: Ferret output is in attojoules
#
##########################################
[../]
[./perc_change]
type = EnergyRatePostprocessor
postprocessor = FtotFER
execute_on = 'initial timestep_end final'
dt = dt
[../]
[./elapsed]
type = PerfGraphData
section_name = "Root" # for profiling the problem
data_type = total
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalBFOMaterialRVEUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type '
petsc_options_value = ' 121 1e-8 1e-7 1e-5 bjacobi'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
[./TimeIntegrator]
type = ImplicitEuler
[../]
dtmin = 1e-14
dtmax = 1.0e-6
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 18 #usually 8-16
linear_iteration_ratio = 100
dt = 1.0e-8
[../]
num_steps = 150000
end_time = ${endtdef}
[]
[Outputs]
print_linear_residuals = false
perf_graph_live = false
[./out]
type = Exodus
file_base = out_P111-P111b-BFOMDL_m1_a1
elemental_as_nodal = true
[../]
[./outCSV]
type = CSV
file_base = out_P111-P111b-BFOMDL_m1_a1
[../]
#
[]
(examples/domain_walls/BTO_wall_T298K.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
nx = 60
ny = 2
nz = 2
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -30.0
xmax = 30.0
ymin = -1.0
ymax = 1.0
zmin = -1.0
zmax = 1.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
vol = vol
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
[./stripe1]
type = ParsedFunction
value = 0.1*cos(0.10471975512*(x+2)) #2pi/L = 0.10471975512
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'stripe1'
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.11 0.045 0.045 -0.11 0.045 -0.11 -0.029 -0.029 -0.029'
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fb]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fw]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Fela]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fc]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'Fb Fw Fc Fele'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'initial timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftot
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_bto_wall_T298K_2
elemental_as_nodal = true
[../]
[./console]
type = Console
time_precision = 3
[../]
[]
(examples/monodomain/BTO_monodomain_Tdef.i)
a1temp = a1def
a11temp = a11def
a111temp = a111def
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 8
ny = 8
nz = 8
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -2.0
xmax = 2.0
ymin = -2.0
ymax = 2.0
zmin = -2.0
zmax = 2.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
vol = vol
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.075
max = 0.1
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.075
max = 0.1
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.075
max = 0.1
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs00]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs11]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./eigs00]
type = LocalABO3EigenstressAux
variable = eigs00
index_i = 0
index_j = 0
[../]
[./eigs11]
type = LocalABO3EigenstressAux
variable = eigs11
index_i = 1
index_j = 1
[../]
[./eigs22]
type = LocalABO3EigenstressAux
variable = eigs22
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '${a1temp} ${a11temp} 0.323 ${a111temp} 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrains_name = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./avePx]
type = ElementAverageValue
variable = polar_x
execute_on = 'timestep_end'
[../]
[./avePy]
type = ElementAverageValue
variable = polar_y
execute_on = 'timestep_end'
[../]
[./avePz]
type = ElementAverageValue
variable = polar_z
execute_on = 'timestep_end'
[../]
[./ave_e00]
type = ElementAverageValue
variable = e00
execute_on = 'timestep_end'
[../]
[./ave_e11]
type = ElementAverageValue
variable = e11
execute_on = 'timestep_end'
[../]
[./ave_e22]
type = ElementAverageValue
variable = e22
execute_on = 'timestep_end'
[../]
[./Fb]
type = BulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./Fw]
type = WallEnergy
execute_on = 'timestep_end'
[../]
[./Fela]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
[../]
[./Fc]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'Fb Fw Fc Fele'
pp_coefs = ' 1 1 1 1'
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftot
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is smallhotkey for tilde
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-6 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./outCSV]
type = CSV
file_base = out_bto_monodomain_Tdef
[../]
[]
(test/tests/electrooptics/BTO_monodomain_T298K_REFnoEO.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 2
ny = 2
nz = 2
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-0.5 -0.5 -0.5'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
[./stripe1]
type = ParsedFunction
value = 0.01*cos(0.08975979010256552*(x)) # 0.08975979010256552 = 2pi/(xmax-xmin)
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.01
max = 0.02
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./stress_xx_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
######################################
##
## Principle change in refractive and
## refractive index components
##
######################################
[./dpn_1]
order = CONSTANT
family = MONOMIAL
[../]
[./dpn_2]
order = CONSTANT
family = MONOMIAL
[../]
[./dpn_3]
order = CONSTANT
family = MONOMIAL
[../]
[./den_1]
order = CONSTANT
family = MONOMIAL
[../]
[./den_2]
order = CONSTANT
family = MONOMIAL
[../]
[./den_3]
order = CONSTANT
family = MONOMIAL
[../]
[./n_1]
order = CONSTANT
family = MONOMIAL
[../]
[./n_2]
order = CONSTANT
family = MONOMIAL
[../]
[./n_3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./dn_p1]
type = PolarOpticChangeInRefractiveIndex
component = 0
variable = dpn_1
execute_on = 'timestep_end'
[../]
[./dn_p2]
type = PolarOpticChangeInRefractiveIndex
component = 1
variable = dpn_2
execute_on = 'timestep_end'
[../]
[./dn_p3]
type = PolarOpticChangeInRefractiveIndex
component = 2
variable = dpn_3
execute_on = 'timestep_end'
[../]
[./dn_e1]
type = ElastoChangeInRefractiveIndex
component = 0
variable = den_1
u_x = u_x
u_y = u_y
u_z = u_z
execute_on = 'timestep_end'
[../]
[./dn_e2]
type = ElastoChangeInRefractiveIndex
component = 1
variable = den_2
u_x = u_x
u_y = u_y
u_z = u_z
execute_on = 'timestep_end'
[../]
[./dn_e3]
type = ElastoChangeInRefractiveIndex
component = 2
variable = den_3
u_x = u_x
u_y = u_y
u_z = u_z
execute_on = 'timestep_end'
[../]
[./n_1_c]
type = ReworkedRefractiveIndex
variable = n_1
elasto = false
electro = false
polar = true
component = 0
var1 = dpn_1
execute_on = 'timestep_end'
[../]
[./n_2_c]
type = ReworkedRefractiveIndex
variable = n_2
elasto = false
electro = false
polar = true
component = 1
var1 = dpn_2
execute_on = 'timestep_end'
[../]
[./n_3_c]
type = ReworkedRefractiveIndex
variable = n_3
elasto = false
electro = false
polar = true
component = 2
var1 = dpn_3
execute_on = 'timestep_end'
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.11 0.045 0.045 -0.11 0.045 -0.11 -0.029 -0.029 -0.029'
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./ref_index]
############################################
##
## Cubic refractive index BTO
## (need correct value)
##
############################################
type = GenericConstantMaterial
prop_names = 'n1 n2 n3 n4 n5 n6'
prop_values = '2.4272 2.4272 2.4272 0.0 0.0 0.0'
[../]
[./po_tensor]
############################################
##
## PO tensor coefficients from
## Bernasconi and Günter
## J. Appl. Phys., 78, 2651 (1995)
##
############################################
type = GenericConstantMaterial
prop_names = 'g1111 g1122 g1212'
prop_values = '0.15 0.038 0.07'
[../]
[./eo_tensor]
############################################
##
## Elastoptic tensor coefficients from
## Bernasconi and Günter
## J. Appl. Phys., 78, 2651 (1995)
##
############################################
type = GenericConstantMaterial
prop_names = 'p1111 p1122 p1212'
prop_values = '0.37 0.11 -0.30'
[../]
[./eps]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '0 1 2 3 4 5'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
num_steps = 5
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = test_bire_no_EO
elemental_as_nodal = true
[../]
[]
(test/tests/dispersion/genDomain_PzEz.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 2
ny = 2
nz = 2
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-0.5 -0.5 -0.5'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.01
max = 0.02
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./stress_xx_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs00]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs11]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./eigs00]
type = LocalABO3EigenstressAux
variable = eigs00
index_i = 0
index_j = 0
[../]
[./eigs11]
type = LocalABO3EigenstressAux
variable = eigs11
index_i = 1
index_j = 1
[../]
[./eigs22]
type = LocalABO3EigenstressAux
variable = eigs22
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0.0 0.0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_name = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '0 1 2 3 4 5'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '0.0 0.0 0.0 0.0 0.0 0.0'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_PzEz
elemental_as_nodal = true
[../]
[]
(test/tests/dispersion/genDomain_PyEz.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 2
ny = 2
nz = 2
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-0.5 -0.5 -0.5'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.01
max = 0.02
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./stress_xx_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs00]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs11]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./eigs00]
type = LocalABO3EigenstressAux
variable = eigs00
index_i = 0
index_j = 0
[../]
[./eigs11]
type = LocalABO3EigenstressAux
variable = eigs11
index_i = 1
index_j = 1
[../]
[./eigs22]
type = LocalABO3EigenstressAux
variable = eigs22
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0.0 0.0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_name = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '0 1 2 3 4 5'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '0.0 0.0 0.0 0.0 0.0 0.0'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_PyEz
elemental_as_nodal = true
[../]
[]
(test/tests/film/PTO_film3_T298K.i)
[Mesh]
[gen]
############################################
##=
## Type and dimension of the mesh
##=
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##=
#############################################
nx = 4
ny = 4
nz = 18 #need approximately 90 processors for this since dof is 953133 and we want 10k dof/proc
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -2.0
xmax = 2.0
ymin = -2.0
ymax = 2.0
zmin = -10.0
zmax = 8.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##=
############################################
type = ExtraNodesetGenerator
coord = '-2.0 -2.0 -10.0'
new_boundary = 100
[../]
[subdomains]
type = SubdomainBoundingBoxGenerator
input = cnode
bottom_left = '-2.0 -2.0 -10.0'
block_id = 1
top_right = '2.0 2.0 0'
location = INSIDE
[]
[film_interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomains
primary_block = 0
paired_block = 1
new_boundary = 52
[]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
vol = vol
##############################################
##=
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-5
max = 0.1e-5
[../]
block = '0 1'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-5
max = 0.1e-5
[../]
block = '0 1'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-5
max = 0.1e-5
[../]
block = '0 1'
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_x]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_y]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_z]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
block = '0 1'
[../]
[./disp_y]
block = '0 1'
[../]
[./disp_z]
block = '0 1'
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## add comments
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##=
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0'
block = '0'
[../]
[./Landau_P_substr]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
block = '1'
[../]
############################################
##
## add comments
##
############################################
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '0'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175.0 79.4 111.1'
block = '0'
[../]
[./mat_C_sub]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '220.0 34.4 161.1'
block = '1'
[../]
##################################################
##=
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
block = '0 1'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_names = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
block = '0 1'
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
block = '0 1'
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
block = '0 1'
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
block = '0 1'
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
block = '0 1'
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
block = '0 1'
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
block = '0 1'
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
block = '0 1'
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
block = '0 1'
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
block = '0 1'
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
block = '0 1'
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
block = '0 1'
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
block = '0 1'
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
block = '0 1'
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xy]
auto_direction = 'x y'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '52'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 'back'
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 'back'
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 'back'
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##=
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'timestep_end'
block = '0'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
block = '0'
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
u_x = u_x
u_y = u_y
u_z = u_z
block = '0'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
block = '0'
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
block = '0'
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
block = '0'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
###############################################
##=
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '4.375 4.375 3.97 0.0 0.0 0.0'
block = '0 1'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##=
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-8 1e-5 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
dtmax = 0.6
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.2
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.6
[../]
verbose = true
nl_max_its = 20
num_steps = 5
[]
[Outputs]
###############################################
##===============
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_pto_film_test
elemental_as_nodal = true
interval = 1
[../]
[]
(examples/films/PZTfilm_e12_T298K_E0.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 32
ny = 32
nz = 30
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -16.0
xmax = 16.0
ymin = -16.0
ymax = 16.0
zmin = -10.0
zmax = 20.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-16.0 -16.0 -10.0'
new_boundary = 100
[../]
[subdomains]
type = SubdomainBoundingBoxGenerator
input = cnode
bottom_left = '-16.0 -16.0 -10.0'
block_id = 1
top_right = '16.0 16.0 0'
location = INSIDE
[]
[film_interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomains
primary_block = 0
paired_block = 1
new_boundary = 52
[]
[film_surface]
type = SideSetsFromNormalsGenerator
input = film_interface
normals = '0 0 1'
fixed_normal = true
new_boundary = '107'
[]
[substrate_bottom]
type = SideSetsFromNormalsGenerator
input = film_surface
normals = '0 0 -1'
fixed_normal = true
new_boundary = '108'
[]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##=
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
vol = vol
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_x]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_y]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_z]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
block = '0 1'
[../]
[./disp_y]
block = '0 1'
[../]
[./disp_z]
block = '0 1'
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_x]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_y]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_z]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./ex]
type = ElecFieldAux
variable = E_x
component = 0
[../]
[./ey]
type = ElecFieldAux
variable = E_y
component = 1
[../]
[./ez]
type = ElecFieldAux
variable = E_z
component = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Landau, electrostrictive, elastic coefficients
## M. Mtebwa, A. K. Tagantsev, and N. Setter
## AIP Adv. 4, 127150 (2014).
##
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.048889 0.04764 0.1336 0.1735 0.6128 -2.894 0.0 0.0 0.0 0.0'
block = '0'
[../]
[./Landau_P_substr]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
block = '1'
[../]
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '0'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '179.073 66.71 82.6446'
block = '0'
[../]
[./mat_C_sub]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '220.0 34.4 161.1'
block = '1'
[../]
##################################################
##=
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.0966 0.046 -0.0819'
block = '0 1'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.1608 4.86165 -6.76859'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '179.073 66.71 66.71 179.073 66.71 179.073 82.6446 82.6446 82.6446'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_names = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
block = '0'
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
block = '0'
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
block = '0'
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
block = '0'
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
block = '0'
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
block = '0'
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
block = '0'
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
block = '0 1'
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
block = '0'
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
block = '0'
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
block = '0'
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable = polar_y
time_scale = 1.0
block = '0'
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
block = '0'
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xy]
auto_direction = 'x y'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
[./boundary_interface_grounding]
type = DirichletBC
boundary = '52'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = '108'
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = '108'
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = '108'
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##=
## Postprocessors (integrations over the
## computational domain) to calculate the total
## energy decomposed into linear combinations of
## the different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'timestep_end'
block = '0'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
block = '0'
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = '0.160218 0.160218 0.160218 0.160218' #converted to eV
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
block = '0'
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
block = '0'
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
block = '0'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'timestep_end'
[../]
[./elapsed]
type = PerfGraphData
section_name = "Root" # for profiling the problem [on]
data_type = total
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '2.1 2.1 1.9056 0.0 0.0 0.0'
block = '0'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 5.0e-4'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 80 1e-8 1e-6 1e-5 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integ=ration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'bdf2'
dtmin = 1e-13
dtmax = 0.6
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.2
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.6
[../]
verbose = true
nl_max_its = 20
[]
[Outputs]
###############################################
##==
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_PTOfilm_e12_T298K_E0_E0
elemental_as_nodal = true
interval = 1
[../]
[]
(test/tests/auxkernels/surface_charge.i)
[Mesh]
[gen]
############################################
##=
## Type and dimension of the mesh
##=
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##=
#############################################
nx = 4
ny = 4
nz = 8
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -1.0
xmax = 1.0
ymin = -1.0
ymax = 1.0
zmin = -2.0
zmax = 2.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-1.0 -1.0 -2.0'
new_boundary = 100
[../]
[subdomains]
type = SubdomainBoundingBoxGenerator
input = cnode
bottom_left = '-1.0 -1.0 -2.0'
block_id = 1
top_right = '1.0 1.0 0'
location = INSIDE
[]
[film_interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomains
primary_block = 0
paired_block = 1
new_boundary = 52
[]
[film_surface]
type = SideSetsFromNormalsGenerator
input = film_interface
normals = '0 0 1'
fixed_normal = true
new_boundary = '107'
[]
[substrate_bottom]
type = SideSetsFromNormalsGenerator
input = film_surface
normals = '0 0 -1'
fixed_normal = true
new_boundary = '108'
[]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##=
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_x]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_y]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_z]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
block = '0 1'
[../]
[./disp_y]
block = '0 1'
[../]
[./disp_z]
block = '0 1'
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
######################################
##
## divP and surf charge
##
######################################
[./divP]
order = CONSTANT
family = MONOMIAL
block = '0'
[../]
[./surfP]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./divP]
type = DivP
variable = divP
[../]
[./surfP]
type = SurfaceChargeP
variable = surfP
boundary = '107'
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## add comments
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##=
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0'
block = '0'
[../]
[./Landau_P_substr]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
block = '1'
[../]
############################################
##
## add comments
##
############################################
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '0'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175.0 79.4 111.1'
block = '0'
[../]
[./mat_C_sub]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '220.0 34.4 161.1'
block = '1'
[../]
##################################################
##=
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
block = '0 1'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_names = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
block = '0'
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
block = '0'
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
block = '0'
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
block = '0'
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
block = '0'
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
block = '0'
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
block = '0'
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
block = '0 1'
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
block = '0'
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
block = '0'
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
block = '0'
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
block = '0'
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
block = '0'
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xy]
auto_direction = 'x y'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
[./boundary_interface_grounding]
type = DirichletBC
boundary = '52'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = '108'
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = '108'
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = '108'
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##=
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'timestep_end'
block = '0'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
block = '0'
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = '0.160218 0.160218 0.160218 0.160218' #convert to eV
execute_on = 'timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
###############################################
##=
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '0.0 0.0 0.0 0.0 0.0 0.0'
block = '0'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 5.0e-4'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##=
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 80 1e-8 1e-5 1e-5 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integ=ration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'bdf2'
dtmin = 1e-13
dtmax = 0.6
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.2
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.6
[../]
verbose = true
nl_max_its = 20
num_steps = 6
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_surface_charge
elemental_as_nodal = true
interval = 1
[../]
[]
(examples/monodomain/PZT_monodomain_Tdef.i)
a1temp = a1def
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 8
ny = 8
nz = 8
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -2.0
xmax = 2.0
ymin = -2.0
ymax = 2.0
zmin = -2.0
zmax = 2.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
vol = vol
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-6
max = 0.1e-6
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-6
max = 0.1e-6
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.05
max = 0.1
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs00]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs11]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./eigs00]
type = LocalABO3EigenstressAux
variable = eigs00
index_i = 0
index_j = 0
[../]
[./eigs11]
type = LocalABO3EigenstressAux
variable = eigs11
index_i = 1
index_j = 1
[../]
[./eigs22]
type = LocalABO3EigenstressAux
variable = eigs22
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Landau, electrostrictive, elastic coefficients
## M. Mtebwa, A. K. Tagantsev, and N. Setter
## AIP Adv. 4, 127150 (2014).
##
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '${a1temp} 0.04764 0.1336 0.1735 0.6128 -2.894 0.0 0.0 0.0 0.0'
block = '0'
[../]
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '0'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '179.073 66.71 82.6446'
block = '0'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.0966 0.046 -0.0819'
block = '0'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.1608 4.86165 -6.76859'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '179.073 66.71 66.71 179.073 66.71 179.073 82.6446 82.6446 82.6446'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrains_name = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '0 1 2 3 4 5'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./avePx]
type = ElementAverageValue
variable = polar_x
execute_on = 'timestep_end'
[../]
[./avePy]
type = ElementAverageValue
variable = polar_y
execute_on = 'timestep_end'
[../]
[./avePz]
type = ElementAverageValue
variable = polar_z
execute_on = 'timestep_end'
[../]
[./ave_e00]
type = ElementAverageValue
variable = e00
execute_on = 'timestep_end'
[../]
[./ave_e11]
type = ElementAverageValue
variable = e11
execute_on = 'timestep_end'
[../]
[./ave_e22]
type = ElementAverageValue
variable = e22
execute_on = 'timestep_end'
[../]
[./Fb]
type = BulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./Fw]
type = WallEnergy
execute_on = 'timestep_end'
[../]
[./Fela]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
[../]
[./Fc]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'Fb Fw Fc Fele'
pp_coefs = ' 1 1 1 1'
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftot
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is smallhotkey for tilde
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-6 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
##
###########################################
dtmax = 1.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./outCSV]
type = CSV
file_base = out_pzt_monodomain_Tdef
[../]
[]
(test/tests/dispersion/perturbBTO_PyEz.i)
freq = 177827941.00389227
amplitude = 1e-3
[Mesh]
file = out_PyEz.e
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
##############################
##
## Define the electric field
## expression to be used below
##
##############################
[./bc_func_1]
type = ParsedFunction
value = 'amplitude*sin(freq*t)'
vars = 'freq amplitude'
vals = '${freq} ${amplitude}'
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_x
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_y
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_z
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./stress_xx_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./Ez]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./cEy]
type = QuasistaticFieldAux
component = 2
potential_int = potential_E_int
variable = Ez
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0.0 0.0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable = polar_x
# Time scale estimate for BTO, from Hlinka (2007)
# We use seconds here
time_scale = 1e-12
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable = polar_y
time_scale = 1e-12
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1e-12
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./front_pot]
type = FunctionDirichletBC
variable = potential_E_int
boundary = 'front'
function = bc_func_1
[../]
[./boundary_grounding]
type = DirichletBC
boundary = 'left right top bottom back'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
[./avePz]
type = ElementAverageValue
variable = polar_z
execute_on = 'initial timestep_end'
[../]
[./Ea]
type = ElementAverageValue
variable = Ez
execute_on = 'initial timestep_end'
[../]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-16
dt = 3.5332947520558995e-10
dtmax = 1e-10
verbose = true
num_steps = 5
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_perturbBTO_PyEz0
elemental_as_nodal = true
[../]
[./outCSV]
type = CSV
new_row_tolerance = 1e-16
file_base = out_perturbBTO_PyEz0
[../]
[]
(examples/other/PTO_E0.i)
[Mesh]
file = 2sphere.e
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##=
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi
## and their initial conditions
##
#################################
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-2
max = 0.1e-2
seed = 1
[../]
block = '1 2'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-2
max = 0.1e-2
seed = 2
[../]
block = '1 2'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-2
max = 0.1e-2
seed = 3
[../]
block = '1 2'
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
block = '1 2 3'
[../]
[./u_x]
order = FIRST
family = LAGRANGE
block = '1 2 3'
[../]
[./u_y]
order = FIRST
family = LAGRANGE
block = '1 2 3'
[../]
[./u_z]
order = FIRST
family = LAGRANGE
block = '1 2 3'
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Materials]
#################################################
##
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0' #corresponds to T = 298K
block = '1 2'
[../]
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '1 2'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175.0 79.4 111.1'
block = '1 2'
[../]
[./mat_C_sub]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '121.0 42.0 37.0'
block = '3'
[../]
##################################################
##=
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
block = '1 2'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
block = '1 2'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
block = '1 2'
[../]
[./elasticity_tensor_2]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '121.0 0.0 0.0 121.0 0.0 121.0 0.0 0.0 0.0'
block = '3'
[../]
[./strain_12]
type = ComputeSmallStrain
eigenstrain_names = eigenstrain
[../]
[./stress_12]
type = ComputeLinearElasticStress
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
block = '1 2'
[../]
[./permitivitty_2]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '2.6562561'
block = '3'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_names = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
block = '1 2'
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
block = '1 2'
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
block = '1 2'
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
block = '1 2'
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
block = '1 2'
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
block = '1 2'
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
block = '1 2'
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
block = '1 2'
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
block = '1 2'
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
block = '1 2'
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
block = '1 2'
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
block = '1 2'
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
block = '1 2'
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
block = '1 2 3'
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
block = '1 2'
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
block = '1 2'
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
block = '1 2'
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable=u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable=u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[BCs]
[./boundary_grounding]
type = DirichletBC
boundary = '1 2 3 4 5 6'
variable = potential_E_int
value = 0.0
[../]
[./elastic_grounding_ux]
type = DirichletBC
boundary = '1 2 3 4 5 6'
variable = u_x
value = 0.0
[../]
[./elastic_grounding_uy]
type = DirichletBC
boundary = '1 2 3 4 5 6'
variable = u_y
value = 0.0
[../]
[./elastic_grounding_uz]
type = DirichletBC
boundary = '1 2 3 4 5 6'
variable = u_z
value = 0.0
[../]
[]
[Postprocessors]
###############################################
##=
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'timestep_end'
block = '1 2'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'timestep_end'
block = '1 2'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
block = '1 2'
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
block = '1 2'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
block = '1 2'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 1e-5
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-5'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##=
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-6 1e-5 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'NEWTON'
scheme = 'implicit-euler'
dtmin = 1e-13
dtmax = 1.5
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.2
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.6
[../]
verbose = true
nl_max_its = 20
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[./out]
type = Exodus
file_base = out_PTOsphere0_inSTO_2_2
elemental_as_nodal = true
interval = 1
[../]
[./outCSV]
type = CSV
file_base = out_PTOsphere0_inSTO_2_2
[../]
[]
(test/tests/pbc/pbc.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 6
ny = 6
nz = 2
xmin = -6.0
xmax = 6.0
ymin = -6.0
ymax = 6.0
zmin = -2.0
zmax = 2.0
elem_type = HEX8
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '-6.0 -6.0 -2.0'
new_boundary = 100
[../]
# additional boundary sideset (one node) to zero one of the elastic displacement vectors - eliminates rigid body translations from the degrees of freedom
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 0.42 0.735 0.26 0.61 -3.67 0 0 0 0'
[../]
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175 79.4 111.1'
[../]
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.089 0.026 0.026 -0.089 0.026 -0.089 -0.03375 -0.03375 -0.03375'
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./permitivitty_1]
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
#note below we use a strain-renormalized functional for lead titanate (this is different than the stress-free functionals typically used)
# they are related by a Legendre transformation
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
#[./elapsed]
# type = PerfGraphData
# section_name = "Root"
# data_type = total
#[../]
#[./nodes]
# type = NumNodes
#[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-8 1e-8 bjacobi allreduce'
[../]
[]
#[Debug]
# show_var_residual_norms = true
#[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
dtmax = 0.8
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
num_steps = 10
#[./Adaptivity]
# coarsen_fraction = 0.1
# refine_fraction = 0.7
# max_h_level = 1
#[../]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[./out]
type = Exodus
file_base = out_pbc
elemental_as_nodal = true
interval = 5
[../]
[./outCSV]
type = CSV
file_base = out_pbc
[../]
[]
(test/tests/film/PTO_film3_T298K_noP.i)
[Mesh]
[gen]
############################################
##=
## Type and dimension of the mesh
##=
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##=
#############################################
nx = 4
ny = 4
nz = 18 #need approximately 90 processors for this since dof is 953133 and we want 10k dof/proc
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -2.0
xmax = 2.0
ymin = -2.0
ymax = 2.0
zmin = -10.0
zmax = 8.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##=
############################################
type = ExtraNodesetGenerator
coord = '-2.0 -2.0 -10.0'
new_boundary = 100
[../]
[subdomains]
type = SubdomainBoundingBoxGenerator
input = cnode
bottom_left = '-2.0 -2.0 -10.0'
block_id = 1
top_right = '2.0 2.0 0'
location = INSIDE
[]
[film_interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomains
primary_block = 0
paired_block = 1
new_boundary = 52
[]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
vol = vol
##############################################
##=
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-5
max = 0.1e-5
[../]
block = '0'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-5
max = 0.1e-5
[../]
block = '0'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-5
max = 0.1e-5
[../]
block = '0'
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_x]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_y]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_z]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
block = '0 1'
[../]
[./disp_y]
block = '0 1'
[../]
[./disp_z]
block = '0 1'
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## add comments
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##=
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0'
block = '0'
[../]
[./Landau_P_substr]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
block = '1'
[../]
############################################
##
## add comments
##
############################################
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '0'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175.0 79.4 111.1'
block = '0'
[../]
[./mat_C_sub]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '220.0 34.4 161.1'
block = '1'
[../]
##################################################
##=
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
block = '0 1'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_names = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
block = '0'
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
block = '0'
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
block = '0'
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
block = '0'
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
block = '0'
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
block = '0'
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
block = '0'
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
block = '0 1'
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
block = '0'
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
block = '0'
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xy]
auto_direction = 'x y'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '52'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 'back'
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 'back'
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 'back'
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##=
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'timestep_end'
block = '0'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
block = '0'
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
u_x = u_x
u_y = u_y
u_z = u_z
block = '0'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
block = '0'
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
block = '0'
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
block = '0'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
###############################################
##=
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '4.375 4.375 3.97 0.0 0.0 0.0'
block = '0'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##=
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-8 1e-5 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
dtmax = 0.6
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.2
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.6
[../]
verbose = true
nl_max_its = 20
num_steps = 5
[]
[Outputs]
###############################################
##===============
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_pto_film_noP_test
elemental_as_nodal = true
interval = 1
[../]
[]
(examples/domain_walls/BTO_90wall_T298K.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
nx = 60
ny = 60
nz = 2
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -30.0
xmax = 30.0
ymin = -30.0
ymax = 30.0
zmin = -1.0
zmax = 1.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
vol = vol
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
[./stripe1]
type = ParsedFunction
value = 0.1*cos(0.10471975511965977*((x+5)+(y+5)))+0.1 # 0.10471975511965977 = pi/(xmax-xmin)
[../]
[./stripe2]
type = ParsedFunction
value = -0.1*cos(0.10471975511965977*((x+5)+(y+5)))+0.1
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'stripe1'
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'stripe2'
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.11 0.045 0.045 -0.11 0.045 -0.11 -0.029 -0.029 -0.029'
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fb]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fw]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Fela]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fc]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'Fb Fw Fc Fele'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftot
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-6 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_bto_90wall_T298K_2
elemental_as_nodal = true
[../]
[./console]
type = Console
time_precision = 3
[../]
[]
(test/tests/msca/BFO_dwP1A1_100.i)
Nx = 100
Ny = 1
Nz = 1
xMax = 9.42477796076938
yMax = 1.0
zMax = 1.0
freq = 0.2122065907891938
g11 = 12e-3
g12 = -3.0e-3
g44 = 3.0e-3
h11 = 2.0e-4
h12 = -0.2e-3
h44 = 0.8e-3
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = ${Nx}
ny = ${Ny}
nz = ${Nz}
xmin = 0.0
xmax = ${xMax}
ymin = 0.0
ymax = ${yMax}
zmin = 0.0
zmax = ${zMax}
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
antiphase_A_x = antiphase_A_x
antiphase_A_y = antiphase_A_y
antiphase_A_z = antiphase_A_z
displacements = 'u_x u_y u_z'
potential_E_int = potential_E_int
[]
[Functions]
[./stripeP1]
type = ParsedFunction
value = 0.54*cos(${freq}*(x))
[../]
[./stripeP2]
type = ParsedFunction
value = -0.54*cos(${freq}*(x))
[../]
[./stripeA1]
type = ParsedFunction
value = 7.37*cos(${freq}*(x))
[../]
[./stripeA2]
type = ParsedFunction
value = -7.37*cos(${freq}*(x))
[../]
[./constPm]
type = ParsedFunction
value = -0.54
[../]
[./constPp]
type = ParsedFunction
value = 0.54
[../]
[./constAm]
type = ParsedFunction
value = -7.37
[../]
[./constAp]
type = ParsedFunction
value = 7.37
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constPp
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constPp
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = stripeP1
[../]
[../]
[./antiphase_A_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constAp
[../]
[../]
[./antiphase_A_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constAp
[../]
[../]
[./antiphase_A_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = stripeA1
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e21]
order = CONSTANT
family = MONOMIAL
[../]
[./e02]
order = CONSTANT
family = MONOMIAL
[../]
[./e20]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e21]
type = RankTwoAux
variable = e21
rank_two_tensor = total_strain
index_i = 2
index_j = 1
[../]
[./e20]
type = RankTwoAux
variable = e20
rank_two_tensor = total_strain
index_i = 2
index_j = 0
[../]
[./e02]
type = RankTwoAux
variable = e02
rank_two_tensor = total_strain
index_i = 0
index_j = 2
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./rotostr_ux]
type = RotostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./rotostr_uy]
type = RotostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./rotostr_uz]
type = RotostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
### Operators for the polar field: ###
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./walled2_x]
type = Wall2EnergyDerivative
variable = polar_x
component = 0
[../]
[./walled2_y]
type = Wall2EnergyDerivative
variable = polar_y
component = 1
[../]
[./walled2_z]
type = Wall2EnergyDerivative
variable = polar_z
component = 2
[../]
[./walled_a_x]
type = AFDWallEnergyDerivative
variable = antiphase_A_x
component = 0
[../]
[./walled_a_y]
type = AFDWallEnergyDerivative
variable = antiphase_A_y
component = 1
[../]
[./walled_a_z]
type = AFDWallEnergyDerivative
variable = antiphase_A_z
component = 2
[../]
[./walled2_a_x]
type = AFDWall2EnergyDerivative
variable = antiphase_A_x
component = 0
[../]
[./walled2_a_y]
type = AFDWall2EnergyDerivative
variable = antiphase_A_y
component = 1
[../]
[./walled2_a_z]
type = AFDWall2EnergyDerivative
variable = antiphase_A_z
component = 2
[../]
[./roto_polar_coupled_x]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_x
component = 0
[../]
[./roto_polar_coupled_y]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_y
component = 1
[../]
[./roto_polar_coupled_z]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_z
component = 2
[../]
[./roto_dis_coupled_x]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_x
component = 0
[../]
[./roto_dis_coupled_y]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_y
component = 1
[../]
[./roto_dis_coupled_z]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
#Operators for the AFD field
[./rbed_x]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_x
component = 0
[../]
[./rbed_y]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_y
component = 1
[../]
[./rbed_z]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_z
component = 2
[../]
[./rotostr_dis_coupled_x]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_x
component = 0
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./rotostr_dis_coupled_y]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_y
component = 1
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./rotostr_dis_coupled_z]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_z
component = 2
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
block = '0'
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
block = '0'
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
block = '0'
[../]
[./a_x_time]
type = TimeDerivativeScaled
variable = antiphase_A_x
time_scale = 0.01
block = '0'
[../]
[./a_y_time]
type = TimeDerivativeScaled
variable = antiphase_A_y
time_scale = 0.01
block = '0'
[../]
[./a_z_time]
type = TimeDerivativeScaled
variable = antiphase_A_z
time_scale = 0.01
block = '0'
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[Materials]
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-2.81296 1.72351 2.24147 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./Landau_A]
type = GenericConstantMaterial
prop_names = 'beta1 beta11 beta12 beta111 beta112 beta123 beta1111 beta1112 beta1122 beta1123'
prop_values = '-0.0137763 0.0000349266 0.0000498846 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./P_A_couple]
type = GenericConstantMaterial
prop_names = 't1111 t1122 t1212 t42111111 t24111111 t42111122 t24112222 t42112233 t24112233 t42112211 t24111122 t42111212 t42123312 t24121112 t24121233 t6211111111 t2611111111 t6211111122 t2611222222 t4411111111 t4411112222'
prop_values = '0.012516 0.0180504 -0.036155 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '1.0 ${g11} ${g12} ${g44} 0.0'
[../]
[./Landau_H]
type = GenericConstantMaterial
prop_names = 'H110 H11_H110 H12_H110 H44_H110 H44P_H110'
prop_values = '1.0 ${h11} ${h12} ${h44} 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '295.179 117.567 74.0701'
[../]
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.0603833 0.0111245 -0.0175686'
[../]
[./mat_R]
type = GenericConstantMaterial
prop_names = 'R11 R12 R44'
prop_values = '-0.0000878064 0.0000295306 0.0000627962'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-30.4162 -5.01496 -10.4105'
#the point is the following: use a slightly different definition of Q_ij than Hlinka
[../]
[./mat_r]
type = GenericConstantMaterial
prop_names = 'r11 r12 r44'
prop_values = '-0.0379499 0.00373096 0.0372105'
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '295.179 117.567 117.567 295.179 117.567 295.179 74.0701 74.0701 74.0701'
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./FbP]
type = BulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./FbA]
type = RotoBulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./FcPA]
type = RotoPolarCoupledEnergyEighth
execute_on = 'timestep_end'
[../]
[./FgP]
type = WallEnergy
execute_on = 'timestep_end'
[../]
[./FgA]
type = AFDWallEnergy
execute_on = 'timestep_end'
[../]
[./FcPu]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./FcAu]
type = RotostrictiveCouplingEnergy
execute_on = 'timestep_end'
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./Felu]
type = ElasticEnergy
execute_on = 'timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'FbP FbA FgP FgA FcPA FcPu FcAu Felu Fele'
pp_coefs = ' 1 1 1 1 1 1 1 1 1'
execute_on = 'timestep_end'
##########################################
#
# NOTE: Ferret output is in attojoules
#
##########################################
[../]
[./perc_change]
type = EnergyRatePostprocessor
postprocessor = Ftot
execute_on = 'timestep_end'
dt = dt
[../]
[]
[BCs]
[./Periodic]
[./x]
auto_direction = 'x'
variable = 'u_x u_y u_z polar_x polar_y polar_z antiphase_A_x antiphase_A_y antiphase_A_z'
[../]
[./xyz]
auto_direction = 'x y z'
variable = 'potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalBFOMaterialRVEUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[./kill]
type = Terminator
expression = 'perc_change <= 5.0e-7'
[../]
[]
#=
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 121 1e-8 1e-7 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
scheme = 'bdf2'
dtmin = 1e-13
dtmax = 10.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 25 #usually 10
linear_iteration_ratio = 100
dt = 0.08
growth_factor = 1.1
[../]
num_steps = 3
[]
#=
[Outputs]
print_linear_residuals = false
perf_graph_live = false
[./out]
type = Exodus
file_base = BFO_dwP1A1_100
elemental_as_nodal = true
[../]
[]
(test/tests/domain_wall/test_BTO_domain_wall.i)
############################################
##
## to use this file, scale up size and add
## the functionIC to the polar field for the
## appropriate wall
## current Nov 2020 tests benchmark this
## within 10% of FFT calculations using the
## same functional
##
############################################
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 2
ny = 2
nz = 2
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-0.5 -0.5 -0.5'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
[./stripe1]
type = ParsedFunction
value = 0.01*cos(0.08975979010256552*(x))
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE1: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
## NOTE2: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.11 0.045 0.045 -0.11 0.045 -0.11 -0.029 -0.029 -0.029'
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./wall2ed_x]
type = Wall2EnergyDerivative
variable = polar_x
component = 0
[../]
[./wall2ed_y]
type = Wall2EnergyDerivative
variable = polar_y
component = 1
[../]
[./wall2ed_z]
type = Wall2EnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '0 1 2 3 4 5'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-8 1e-8 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
num_steps = 4
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = test
elemental_as_nodal = true
[../]
[]
(tutorial/film.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
nx = 32
ny = 32
nz = 30
xmin = -16.0
xmax = 16.0
ymin = -16.0
ymax = 16.0
zmin = -10.0
zmax = 20.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-16.0 -16.0 -10.0'
new_boundary = 100
[../]
[subdomains]
type = SubdomainBoundingBoxGenerator
input = cnode
bottom_left = '-16.0 -16.0 -10.0'
block_id = 1
top_right = '16.0 16.0 0'
location = INSIDE
[]
[film_interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomains
primary_block = 0
paired_block = 1
new_boundary = 52
[]
[film_surface]
type = SideSetsFromNormalsGenerator
input = film_interface
normals = '0 0 1'
fixed_normal = true
new_boundary = '107'
[]
[substrate_bottom]
type = SideSetsFromNormalsGenerator
input = film_surface
normals = '0 0 -1'
fixed_normal = true
new_boundary = '108'
[]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##=
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
vol = vol
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_x]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_y]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_z]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_names = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
block = '0'
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
block = '0'
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
block = '0'
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./walled2_x]
type = Wall2EnergyDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./walled2_y]
type = Wall2EnergyDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./walled2_z]
type = Wall2EnergyDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
block = '0'
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
block = '0'
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
block = '0'
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
block = '0'
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
block = '0 1'
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
block = '0'
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
block = '0'
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
block = '0'
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable = polar_y
time_scale = 1.0
block = '0'
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
block = '0'
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
block = '0 1'
[../]
[./disp_y]
block = '0 1'
[../]
[./disp_z]
block = '0 1'
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_x]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_y]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_z]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Landau coefficients from Li et al (2001)
##
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0'
block = '0'
[../]
[./Landau_P_substr]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
block = '1'
[../]
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '0'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175.0 79.4 111.1'
block = '0'
[../]
[./mat_C_sub]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '220.0 34.4 161.1'
block = '1'
[../]
##################################################
##=
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
block = '0 1'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[BCs]
[./Periodic]
[./xy]
auto_direction = 'x y'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
[./boundary_interface_grounding]
type = DirichletBC
boundary = '52'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = '108'
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = '108'
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = '108'
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##=
## Postprocessors (integrations over the
## computational domain) to calculate the total
## energy decomposed into linear combinations of
## the different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'timestep_end'
block = '0'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
block = '0'
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = '0.160218 0.160218 0.160218 0.160218' #converted to eV
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
block = '0'
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
block = '0'
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
block = '0'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'timestep_end'
[../]
[./elapsed]
type = PerfGraphData
section_name = "Root" # for profiling the problem [on]
data_type = total
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '2.1 2.1 1.9056 0.0 0.0 0.0'
block = '0'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 5.0e-4'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 80 1e-8 1e-6 1e-5 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integ=ration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'bdf2'
dtmin = 1e-13
dtmax = 0.6
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.2
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.6
[../]
verbose = true
nl_max_its = 20
[]
[Outputs]
###############################################
##==
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_PTOfilm_e12_T298K_E0_E0
elemental_as_nodal = true
interval = 1
[../]
[]
(test/tests/pbc/bcc_pbc.i)
[Mesh]
file = supercell.e
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##=
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi
## and their initial conditions
##
#################################
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-4
max = 0.1e-4
seed = 1
[../]
block = '1 2'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-4
max = 0.1e-4
seed = 2
[../]
block = '1 2'
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
block = '1 2 3'
[../]
[./u_x]
order = FIRST
family = LAGRANGE
block = '1 2 3'
[../]
[./u_y]
order = FIRST
family = LAGRANGE
block = '1 2 3'
[../]
[./u_z]
order = FIRST
family = LAGRANGE
block = '1 2 3'
[../]
[]
[ICs]
[./py1]
type = RandomIC
variable = polar_y
min = 0.58
max = 0.6
seed = 3
block = '1'
[../]
[./py2]
type = RandomIC
variable = polar_y
min = -0.6
max = -0.58
seed = 3
block = '2'
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
block = '1 2 3'
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Materials]
#################################################
##
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0' #corresponds to T = 298K
block = '1 2'
[../]
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '1 2'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175.0 79.4 111.1'
block = '1 2'
[../]
[./mat_C_sub]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '121.0 42.0 37.0'
block = '3'
[../]
##################################################
##=
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.0084375'
block = '1 2'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
block = '1 2'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
block = '1 2'
[../]
[./elasticity_tensor_2]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '121.0 0.0 0.0 121.0 0.0 121.0 0.0 0.0 0.0'
block = '3'
[../]
[./strain_12]
type = ComputeSmallStrain
eigenstrain_names = eigenstrain
[../]
[./stress_12]
type = ComputeLinearElasticStress
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
block = '1 2'
[../]
[./permitivitty_2]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '1.4'
block = '3'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_names = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
block = '1 2'
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
block = '1 2'
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
block = '1 2'
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
block = '1 2'
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
block = '1 2'
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
block = '1 2'
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
block = '1 2'
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
block = '1 2'
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
block = '1 2'
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
block = '1 2'
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
block = '1 2'
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
block = '1 2'
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
block = '1 2'
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
block = '1 2 3'
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
block = '1 2'
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
block = '1 2'
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
block = '1 2'
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable=u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable=u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xy1]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[./xy2]
auto_direction = 'x y z'
variable = 'u_x u_y u_z potential_E_int'
[../]
[../]
[]
[Postprocessors]
###############################################
##=
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'timestep_end'
block = '1 2'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'timestep_end'
block = '1 2'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
block = '1 2'
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
block = '1 2'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
block = '1 2'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'timestep_end'
[../]
[./perc_change]
type = ChangeOverTimePostprocessor
postprocessor = Ftotal
execute_on = 'timestep_end'
compute_relative_change = true
[../]
[]
[UserObjects]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 1e-5
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-4'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##=
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-6 1e-5 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'NEWTON'
scheme = 'implicit-euler'
dtmin = 1e-13
dtmax = 1.5
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.2
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.6
[../]
verbose = true
nl_max_its = 20
num_steps = 1
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[./out]
type = Exodus
file_base = out_bcc_pbc
elemental_as_nodal = true
interval = 1
[../]
[]
(test/tests/dispersion/perturbBTO_PzEz.i)
freq = 1778279410.0389228
amplitude = 0.001
[Mesh]
file = out_PzEz.e
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
##############################
##
## Define the electric field
## expression to be used below
##
##############################
[./bc_func_1]
type = ParsedFunction
value = 'amplitude*sin(freq*t)'
vars = 'freq amplitude'
vals = '${freq} ${amplitude}'
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_x
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_y
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_z
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./stress_xx_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./Ez]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./cEy]
type = QuasistaticFieldAux
component = 2
potential_int = potential_E_int
variable = Ez
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0.0 0.0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable = polar_x
# Time scale estimate for BTO, from Hlinka (2007)
# We use seconds here
time_scale = 1e-12
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable = polar_y
time_scale = 1e-12
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1e-12
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./front_pot]
type = FunctionDirichletBC
variable = potential_E_int
boundary = 'front'
function = bc_func_1
[../]
[./boundary_grounding]
type = DirichletBC
boundary = 'back'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
[./avePz]
type = ElementAverageValue
variable = polar_z
execute_on = 'initial timestep_end'
[../]
[./Ea]
type = ElementAverageValue
variable = Ez
execute_on = 'initial timestep_end'
[../]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-8 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-16
dt = 3.5332947520558994e-11
dtmax = 1e-10
verbose = true
num_steps = 5
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_perturbBTO_PzEz0
elemental_as_nodal = true
[../]
[./outCSV]
type = CSV
new_row_tolerance = 1e-16
file_base = out_perturbBTO_PzEz0
[../]
[]
(examples/monodomain/PTO_monodomain_Tdef.i)
a1temp = a1def
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 8
ny = 8
nz = 8
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -2.0
xmax = 2.0
ymin = -2.0
ymax = 2.0
zmin = -2.0
zmax = 2.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
vol = vol
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-6
max = 0.1e-6
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-6
max = 0.1e-6
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.05
max = 0.1
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs00]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs11]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./eigs00]
type = LocalABO3EigenstressAux
variable = eigs00
index_i = 0
index_j = 0
[../]
[./eigs11]
type = LocalABO3EigenstressAux
variable = eigs11
index_i = 1
index_j = 1
[../]
[./eigs22]
type = LocalABO3EigenstressAux
variable = eigs22
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '${a1temp} -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175.0 79.4 111.1'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrains_name = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '0 1 2 3 4 5'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./avePx]
type = ElementAverageValue
variable = polar_x
execute_on = 'timestep_end'
[../]
[./avePy]
type = ElementAverageValue
variable = polar_y
execute_on = 'timestep_end'
[../]
[./avePz]
type = ElementAverageValue
variable = polar_z
execute_on = 'timestep_end'
[../]
[./ave_e00]
type = ElementAverageValue
variable = e00
execute_on = 'timestep_end'
[../]
[./ave_e11]
type = ElementAverageValue
variable = e11
execute_on = 'timestep_end'
[../]
[./ave_e22]
type = ElementAverageValue
variable = e22
execute_on = 'timestep_end'
[../]
[./Fb]
type = BulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./Fw]
type = WallEnergy
execute_on = 'timestep_end'
[../]
[./Fela]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
[../]
[./Fc]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'Fb Fw Fc Fele'
pp_coefs = ' 1 1 1 1'
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftot
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is smallhotkey for tilde
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-6 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
##
###########################################
dtmax = 1.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./outCSV]
type = CSV
file_base = out_pto_monodomain_Tdef
[../]
[]
(test/tests/auxkernels/microforce.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
xmin = -6.0
xmax = 6.0
ymin = -6.0
ymax = 6.0
zmin = -2.0
zmax = 2.0
elem_type = HEX8
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '-6.0 -6.0 -2.0'
new_boundary = 100
[../]
# additional boundary sideset (one node) to zero one of the elastic displacement vectors - eliminates rigid body translations from the degrees of freedom
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./Fb_x]
order = CONSTANT
family = MONOMIAL
[../]
[./Fb_y]
order = CONSTANT
family = MONOMIAL
[../]
[./Fb_z]
order = CONSTANT
family = MONOMIAL
[../]
[./Felstr_x]
order = CONSTANT
family = MONOMIAL
[../]
[./Felstr_y]
order = CONSTANT
family = MONOMIAL
[../]
[./Felstr_z]
order = CONSTANT
family = MONOMIAL
[../]
[./Felec_x]
order = CONSTANT
family = MONOMIAL
[../]
[./Felec_y]
order = CONSTANT
family = MONOMIAL
[../]
[./Felec_z]
order = CONSTANT
family = MONOMIAL
[../]
[./Fw_x]
order = CONSTANT
family = MONOMIAL
[../]
[./Fw_y]
order = CONSTANT
family = MONOMIAL
[../]
[./Fw_z]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./fbx]
type = MicroforceBulkEnergy
variable = Fb_x
component = 0
[../]
[./fby]
type = MicroforceBulkEnergy
variable = Fb_y
component = 1
[../]
[./fbz]
type = MicroforceBulkEnergy
variable = Fb_z
component = 2
[../]
[./felstrx]
type = MicroforceElectrostrictiveCouplingEnergy
variable = Felstr_x
component = 0
[../]
[./felstry]
type = MicroforceElectrostrictiveCouplingEnergy
variable = Felstr_y
component = 1
[../]
[./felstrz]
type = MicroforceElectrostrictiveCouplingEnergy
variable = Felstr_z
component = 2
[../]
[./felecx]
type = MicroforceElectrostaticEnergy
variable = Felec_x
component = 0
[../]
[./felecy]
type = MicroforceElectrostaticEnergy
variable = Felec_y
component = 1
[../]
[./felecz]
type = MicroforceElectrostaticEnergy
variable = Felec_z
component = 2
[../]
[./fwx]
type = MicroforceWallEnergy
variable = Fw_x
component = 0
[../]
[./fwy]
type = MicroforceWallEnergy
variable = Fw_y
component = 1
[../]
[./fwz]
type = MicroforceWallEnergy
variable = Fw_z
component = 2
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 0.42 0.735 0.26 0.61 -3.67 0 0 0 0'
[../]
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175 79.4 111.1'
[../]
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.089 0.026 0.026 -0.089 0.026 -0.089 -0.03375 -0.03375 -0.03375'
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./permitivitty_1]
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
#note below we use a strain-renormalized functional for lead titanate (this is different than the stress-free functionals typically used)
# they are related by a Legendre transformation
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
#[./elapsed]
# type = PerfGraphData
# section_name = "Root"
# data_type = total
#[../]
#[./nodes]
# type = NumNodes
#[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-8 1e-8 bjacobi allreduce'
[../]
[]
#[Debug]
# show_var_residual_norms = true
#[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
dtmax = 0.8
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
num_steps = 10
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[./out]
type = Exodus
file_base = out_microforce_test
elemental_as_nodal = true
interval = 1
[../]
[./outCSV]
type = CSV
file_base = out_microforce_test
[../]
[]
(examples/films/PTOfilm_e12_T298K_E0.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 32
ny = 32
nz = 30
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -16.0
xmax = 16.0
ymin = -16.0
ymax = 16.0
zmin = -10.0
zmax = 20.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-16.0 -16.0 -10.0'
new_boundary = 100
[../]
[subdomains]
type = SubdomainBoundingBoxGenerator
input = cnode
bottom_left = '-16.0 -16.0 -10.0'
block_id = 1
top_right = '16.0 16.0 0'
location = INSIDE
[]
[film_interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomains
primary_block = 0
paired_block = 1
new_boundary = 52
[]
[film_surface]
type = SideSetsFromNormalsGenerator
input = film_interface
normals = '0 0 1'
fixed_normal = true
new_boundary = '107'
[]
[substrate_bottom]
type = SideSetsFromNormalsGenerator
input = film_surface
normals = '0 0 -1'
fixed_normal = true
new_boundary = '108'
[]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##=
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
vol = vol
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_x]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_y]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_z]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
block = '0 1'
[../]
[./disp_y]
block = '0 1'
[../]
[./disp_z]
block = '0 1'
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_x]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_y]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_z]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./ex]
type = ElecFieldAux
variable = E_x
component = 0
[../]
[./ey]
type = ElecFieldAux
variable = E_y
component = 1
[../]
[./ez]
type = ElecFieldAux
variable = E_z
component = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Landau coefficients from Li et al (2001)
##
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0'
block = '0'
[../]
[./Landau_P_substr]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
block = '1'
[../]
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '0'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175.0 79.4 111.1'
block = '0'
[../]
[./mat_C_sub]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '220.0 34.4 161.1'
block = '1'
[../]
##################################################
##=
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
block = '0 1'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_names = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
block = '0'
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
block = '0'
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
block = '0'
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
block = '0'
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
block = '0'
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
block = '0'
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
block = '0'
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
block = '0 1'
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
block = '0'
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
block = '0'
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
block = '0'
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable = polar_y
time_scale = 1.0
block = '0'
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
block = '0'
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xy]
auto_direction = 'x y'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
[./boundary_interface_grounding]
type = DirichletBC
boundary = '52'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = '108'
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = '108'
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = '108'
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##=
## Postprocessors (integrations over the
## computational domain) to calculate the total
## energy decomposed into linear combinations of
## the different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'timestep_end'
block = '0'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
block = '0'
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = '0.160218 0.160218 0.160218 0.160218' #converted to eV
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
block = '0'
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
block = '0'
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
block = '0'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'timestep_end'
[../]
[./elapsed]
type = PerfGraphData
section_name = "Root" # for profiling the problem [on]
data_type = total
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '2.1 2.1 1.9056 0.0 0.0 0.0'
block = '0'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 5.0e-4'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 80 1e-8 1e-6 1e-5 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integ=ration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'bdf2'
dtmin = 1e-13
dtmax = 0.6
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.2
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.6
[../]
verbose = true
nl_max_its = 20
[]
[Outputs]
###############################################
##==
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_PTOfilm_e12_T298K_E0_E0
elemental_as_nodal = true
interval = 1
[../]
[]
(tutorial/BFO_homogeneous_PA.i)
Nx = 3
Ny = 3
Nz = 3
xMax = 1.0
yMax = 1.0
zMax = 1.0
g11 = 12e-3
g12 = -3.0e-3
g44 = 3.0e-3
h11 = 2.0e-4
h12 = -0.2e-3
h44 = 0.8e-3
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = ${Nx}
ny = ${Ny}
nz = ${Nz}
xmin = 0.0
xmax = ${xMax}
ymin = 0.0
ymax = ${yMax}
zmin = 0.0
zmax = ${zMax}
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
antiphase_A_x = antiphase_A_x
antiphase_A_y = antiphase_A_y
antiphase_A_z = antiphase_A_z
displacements = 'u_x u_y u_z'
potential_E_int = potential_E_int
[]
[Functions]
[./constPm]
type = ParsedFunction
value = -0.50
[../]
[./constPp]
type = ParsedFunction
value = 0.50
[../]
[./constAm]
type = ParsedFunction
value = -7.1
[../]
[./constAp]
type = ParsedFunction
value = 7.1
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constPp
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constPp
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constPm
[../]
[../]
[./antiphase_A_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constAp
[../]
[../]
[./antiphase_A_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constAp
[../]
[../]
[./antiphase_A_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = constAm
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./rotostr_ux]
type = RotostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./rotostr_uy]
type = RotostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./rotostr_uz]
type = RotostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
### Operators for the polar field: ###
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./walled2_x]
type = Wall2EnergyDerivative
variable = polar_x
component = 0
[../]
[./walled2_y]
type = Wall2EnergyDerivative
variable = polar_y
component = 1
[../]
[./walled2_z]
type = Wall2EnergyDerivative
variable = polar_z
component = 2
[../]
[./walled_a_x]
type = AFDWallEnergyDerivative
variable = antiphase_A_x
component = 0
[../]
[./walled_a_y]
type = AFDWallEnergyDerivative
variable = antiphase_A_y
component = 1
[../]
[./walled_a_z]
type = AFDWallEnergyDerivative
variable = antiphase_A_z
component = 2
[../]
[./walled2_a_x]
type = AFDWall2EnergyDerivative
variable = antiphase_A_x
component = 0
[../]
[./walled2_a_y]
type = AFDWall2EnergyDerivative
variable = antiphase_A_y
component = 1
[../]
[./walled2_a_z]
type = AFDWall2EnergyDerivative
variable = antiphase_A_z
component = 2
[../]
[./roto_polar_coupled_x]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_x
component = 0
[../]
[./roto_polar_coupled_y]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_y
component = 1
[../]
[./roto_polar_coupled_z]
type = RotoPolarCoupledEnergyPolarDerivativeAlt
variable = polar_z
component = 2
[../]
[./roto_dis_coupled_x]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_x
component = 0
[../]
[./roto_dis_coupled_y]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_y
component = 1
[../]
[./roto_dis_coupled_z]
type = RotoPolarCoupledEnergyDistortDerivativeAlt
variable = antiphase_A_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
#Operators for the AFD field
[./rbed_x]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_x
component = 0
[../]
[./rbed_y]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_y
component = 1
[../]
[./rbed_z]
type = RotoBulkEnergyDerivativeEighthAlt
variable = antiphase_A_z
component = 2
[../]
[./rotostr_dis_coupled_x]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_x
component = 0
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./rotostr_dis_coupled_y]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_y
component = 1
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./rotostr_dis_coupled_z]
type = RotostrictiveCouplingDistortDerivative
variable = antiphase_A_z
component = 2
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
block = '0'
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
block = '0'
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
block = '0'
[../]
[./a_x_time]
type = TimeDerivativeScaled
variable = antiphase_A_x
time_scale = 0.01
block = '0'
[../]
[./a_y_time]
type = TimeDerivativeScaled
variable = antiphase_A_y
time_scale = 0.01
block = '0'
[../]
[./a_z_time]
type = TimeDerivativeScaled
variable = antiphase_A_z
time_scale = 0.01
block = '0'
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e21]
order = CONSTANT
family = MONOMIAL
[../]
[./e02]
order = CONSTANT
family = MONOMIAL
[../]
[./e20]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e21]
type = RankTwoAux
variable = e21
rank_two_tensor = total_strain
index_i = 2
index_j = 1
[../]
[./e20]
type = RankTwoAux
variable = e20
rank_two_tensor = total_strain
index_i = 2
index_j = 0
[../]
[./e02]
type = RankTwoAux
variable = e02
rank_two_tensor = total_strain
index_i = 0
index_j = 2
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[Materials]
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-2.81296 1.72351 2.24147 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./Landau_A]
type = GenericConstantMaterial
prop_names = 'beta1 beta11 beta12 beta111 beta112 beta123 beta1111 beta1112 beta1122 beta1123'
prop_values = '-0.0137763 0.0000349266 0.0000498846 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./P_A_couple]
type = GenericConstantMaterial
prop_names = 't1111 t1122 t1212 t42111111 t24111111 t42111122 t24112222 t42112233 t24112233 t42112211 t24111122 t42111212 t42123312 t24121112 t24121233 t6211111111 t2611111111 t6211111122 t2611222222 t4411111111 t4411112222'
prop_values = '0.012516 0.0180504 -0.036155 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '1.0 ${g11} ${g12} ${g44} 0.0'
[../]
[./Landau_H]
type = GenericConstantMaterial
prop_names = 'H110 H11_H110 H12_H110 H44_H110 H44P_H110'
prop_values = '1.0 ${h11} ${h12} ${h44} 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '295.179 117.567 74.0701'
[../]
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.0603833 0.0111245 -0.0175686'
[../]
[./mat_R]
type = GenericConstantMaterial
prop_names = 'R11 R12 R44'
prop_values = '-0.0000878064 0.0000295306 0.0000627962'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-30.4162 -5.01496 -10.4105'
#the point is the following: use a slightly different definition of Q_ij than Hlinka
[../]
[./mat_r]
type = GenericConstantMaterial
prop_names = 'r11 r12 r44'
prop_values = '-0.0379499 0.00373096 0.0372105'
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '295.179 117.567 117.567 295.179 117.567 295.179 74.0701 74.0701 74.0701'
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./FbP]
type = BulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./FbA]
type = RotoBulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./FcPA]
type = RotoPolarCoupledEnergyEighth
execute_on = 'timestep_end'
[../]
[./FgP]
type = WallEnergy
execute_on = 'timestep_end'
[../]
[./FgA]
type = AFDWallEnergy
execute_on = 'timestep_end'
[../]
[./FcPu]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./FcAu]
type = RotostrictiveCouplingEnergy
execute_on = 'timestep_end'
u_x = disp_x
u_y = disp_y
u_z = disp_z
[../]
[./Felu]
type = ElasticEnergy
execute_on = 'timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'FbP FbA FgP FgA FcPA FcPu FcAu Felu Fele'
pp_coefs = ' 1 1 1 1 1 1 1 1 1'
execute_on = 'timestep_end'
##########################################
#
# NOTE: Ferret output is in attojoules
#
##########################################
[../]
[./perc_change]
type = EnergyRatePostprocessor
postprocessor = Ftot
execute_on = 'timestep_end'
dt = dt
[../]
[]
[BCs]
[./Periodic]
[./x]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z antiphase_A_x antiphase_A_y antiphase_A_z'
[../]
[./xyz]
auto_direction = 'x y z'
variable = 'potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalBFOMaterialRVEUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[./kill]
type = Terminator
expression = 'perc_change <= 5.0e-7'
[../]
[]
#=
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 121 1e-8 1e-7 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
scheme = 'bdf2'
dtmin = 1e-13
dtmax = 10.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 25 #usually 10
linear_iteration_ratio = 100
dt = 0.001
growth_factor = 1.1
[../]
[]
[Outputs]
print_linear_residuals = false
perf_graph_live = false
[./out]
type = Exodus
file_base = BFO_P0A0
elemental_as_nodal = true
[../]
[]