- componentAn integer corresponding to the direction in order parameter space this kernel acts in (e.g. for unrotated functionals 0 for q_x, 1 for q_y, 2 for q_z).
C++ Type:unsigned int
Controllable:No
Description:An integer corresponding to the direction in order parameter space this kernel acts in (e.g. for unrotated functionals 0 for q_x, 1 for q_y, 2 for q_z).
- mag1_xThe x component of the constrained 1st sublattice magnetization vector
C++ Type:std::vector<VariableName>
Controllable:No
Description:The x component of the constrained 1st sublattice magnetization vector
- mag1_yThe y component of the constrained 1st sublattice magnetization vector
C++ Type:std::vector<VariableName>
Controllable:No
Description:The y component of the constrained 1st sublattice magnetization vector
- mag1_zThe z component of the constrained 1st sublattice magnetization vector
C++ Type:std::vector<VariableName>
Controllable:No
Description:The z component of the constrained 1st sublattice magnetization vector
- mag_subAn integer corresponding to the sublattice this Kernel acts on
C++ Type:unsigned int
Controllable:No
Description:An integer corresponding to the sublattice this Kernel acts on
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the variable that this residual object operates on
UniaxialAFMSublattice
Calculates a residual contribution for an uniaxial AFM sublattice
Overview
Here we consider the first example from the work of Rezende et al. (2019) of a uniaxial antiferromagnet . The total free energy density of the material is,
We look for normalized solutions for to the two-sublattice LLG-LLB equation in the presence of zero Gilbert damping (),
(1)
We ignore the time dependence and the longitudinal damping term (from the LLB approximation). Then, we multiply both sides by a test function and integrate over the volume, which yields,
The effective field is computed as,
This gives the residual contribution (in index notation) for to be
The variational derivatives of can be computed as,
Therefore,
Example Input File Syntax
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Controllable:No
Description:The displacements
- mag2_xThe x component of the constrained 2nd sublattice magnetization vector
C++ Type:std::vector<VariableName>
Controllable:No
Description:The x component of the constrained 2nd sublattice magnetization vector
- mag2_yThe y component of the constrained 2nd sublattice magnetization vector
C++ Type:std::vector<VariableName>
Controllable:No
Description:The y component of the constrained 2nd sublattice magnetization vector
- mag2_zThe z component of the constrained 2nd sublattice magnetization vector
C++ Type:std::vector<VariableName>
Controllable:No
Description:The z component of the constrained 2nd sublattice magnetization vector
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- diag_save_inThe name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:The name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- save_inThe name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:The name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
References
- S. M. Rezende, A. Azevedo, and R. L. Rodríguez-Suárez.
Introduction to antiferromagnetic magnons.
Journal of Applied Physics, 2019.[BibTeX]