GrandPotentialInterface

Calculate Grand Potential interface parameters for a specified interfacial free energy and width

The multiphase Grand Potential model is parameterized using a bulk free energy coefficient , a gradient interface coefficient , and a set of interface pair coefficients Aagesen et al. (2018). Note that this model is a multi phase / poly crystal model and the indices and represent phases and and represent grains.

This material class provides the above mentioned parameters and calculates them using the physical parameters of the free energy area density (sigma) for the interface between each pair of phases, and an interface width (width).

To compute the parameters first either the median of all is chosen or, if supplied by the user, the entry with the index sigma_index is chosen (overriding the median computation). The chosen is assigned a value . For this gamma value a set of analytical expessions holds

commentnote:Interface widths

Note that the interface with (width) is only guaranteed for the interface with either the median or - if provided - the index supplied in sigma_index. All other interface widths are a function of their respective interfacial free energies.

With and determined the remaining can be computed using the fitted relation Moelans (2009)

The material propertied provided by this class are directly used by the ACGrGrMulti and ACInterface objects and indirectly used by the GrandPotentialKernelAction.

Input Parameters

  • sigmaInterfacial free energies

    C++ Type:std::vector<double>

    Controllable:No

    Description:Interfacial free energies

  • widthInterfacial width (for the interface with gamma = 1.5)

    C++ Type:double

    Controllable:No

    Description:Interfacial width (for the interface with gamma = 1.5)

Required Parameters

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.

  • constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

    Default:NONE

    C++ Type:MooseEnum

    Options:NONE, ELEMENT, SUBDOMAIN

    Controllable:No

    Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

  • declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

  • gamma_namesInterfacial / grain boundary gamma parameter names (leave empty for gamma0... gammaN)

    C++ Type:std::vector<MaterialPropertyName>

    Controllable:No

    Description:Interfacial / grain boundary gamma parameter names (leave empty for gamma0... gammaN)

  • kappa_namekappaGradient interface parameter name

    Default:kappa

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:Gradient interface parameter name

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • mu_namemuGrain growth bulk energy parameter name

    Default:mu

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:Grain growth bulk energy parameter name

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • sigma_indexSigma index to choose gamma = 1.5 for. Omit this to automatically chose the median sigma.

    C++ Type:unsigned int

    Controllable:No

    Description:Sigma index to choose gamma = 1.5 for. Omit this to automatically chose the median sigma.

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector<OutputName>

    Controllable:No

    Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object

Outputs Parameters

References

  1. Larry K. Aagesen, Yipeng Gao, Daniel Schwen, and Karim Ahmed. Grand-potential-based phase-field model for multiple phases, grains, and chemical components. Phys. Rev. E, 98:023309, Aug 2018. URL: https://link.aps.org/doi/10.1103/PhysRevE.98.023309, doi:10.1103/PhysRevE.98.023309.[BibTeX]
  2. N. Moelans. 2009. http://nele.studentenweb.org/docs/parameters.m; accessed 13-Nov-2018.[BibTeX]