- damage_indexName of the material property containing the damage index, which goes from 0 (undamaged) to 1 (fully damaged)
C++ Type:MaterialPropertyName
Controllable:No
Description:Name of the material property containing the damage index, which goes from 0 (undamaged) to 1 (fully damaged)
Scalar Material Damage
Scalar damage model for which the damage is prescribed by another material
Description
ScalarMaterialDamage
is a model to define the effect of damage on the stress and stiffness in a continuum damage mechanics setting. It does not directly compute the stress, but must be used in conjunction with ComputeDamageStress.
This model is a scalar damage model that does not compute the evolution of damage by itself, but relies on another material model to supply a scalar damage index, which can vary between 0 (undamaged) and 1 (fully damaged). This model is mostly intended for use in testing the continuum damage mecahnics system, but could be used for modeling physical behavior if that were included in the model supplying the damage index.
Input Parameters
- base_nameOptional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases
C++ Type:std::string
Controllable:No
Description:Optional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Controllable:No
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- damage_index_namedamage_indexname of the material property where the damage index is stored
Default:damage_index
C++ Type:MaterialPropertyName
Controllable:No
Description:name of the material property where the damage index is stored
- declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
- maximum_damage1Maximum value allowed for damage index
Default:1
C++ Type:double
Controllable:No
Description:Maximum value allowed for damage index
- maximum_damage_increment0.1maximum damage increment allowed for simulations with adaptive time step
Default:0.1
C++ Type:double
Controllable:No
Description:maximum damage increment allowed for simulations with adaptive time step
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- residual_stiffness_fraction1e-08Minimum fraction of original material stiffness retained for fully damaged material (when damage_index=1)
Default:1e-08
C++ Type:double
Controllable:No
Description:Minimum fraction of original material stiffness retained for fully damaged material (when damage_index=1)
- use_old_damageFalseWhether to use the damage index from the previous step in the stress computation
Default:False
C++ Type:bool
Controllable:No
Description:Whether to use the damage index from the previous step in the stress computation
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object