- index_iThe index i of ij for the tensor to output (0, 1, 2)
C++ Type:unsigned int
Controllable:No
Description:The index i of ij for the tensor to output (0, 1, 2)
- index_jThe index j of ij for the tensor to output (0, 1, 2)
C++ Type:unsigned int
Controllable:No
Description:The index j of ij for the tensor to output (0, 1, 2)
- rank_two_tensorThe rank two material property tensor name
C++ Type:MaterialPropertyName
Controllable:No
Description:The rank two material property tensor name
Material Tensor Average
Computes the average of a RankTwoTensor component over a volume.
Description
The MaterialTensorAverage
postprocessor computes the volume average of the Rank-2 tensor component specified by the user. (1) where is the computed volume average quantity and is the tensor component selected by the user. The tensor component indicies, and , range from 0 to 2 as shown in the reference tensor (2)
The parameter use_displaced_mesh
controls the volume utilized to compute the average. If use_displaced_mesh=true
the average is compute utilizing the deformed volume, if use_displaced_mesh=false
(default) the average is compute utilizing the initial volume.
Example Input File
[Postprocessors]
[./szz_avg]
type = MaterialTensorAverage
rank_two_tensor = stress
index_i = 2
index_j = 2
use_displaced_mesh = true
[]
[./szz_int]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
use_displaced_mesh = true
[]
[./szz_avg_aux]
type = ElementAverageValue
variable = stress_zz
use_displaced_mesh = true
[]
[./szz_int_aux]
type = ElementIntegralVariablePostprocessor
variable = stress_zz
use_displaced_mesh = true
[]
[]
(../moose/modules/tensor_mechanics/test/tests/postprocessors/material_tensor_average_test.i)Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- outputsVector of output names where you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshTrueWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:True
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.