- applied_stress_tensorVector of values defining the constant applied stress to add, in order 11, 22, 33, 23, 13, 12
C++ Type:std::vector<double>
Controllable:No
Description:Vector of values defining the constant applied stress to add, in order 11, 22, 33, 23, 13, 12
- base_nameMaterial properties base name
C++ Type:std::string
Controllable:No
Description:Material properties base name
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- displacementsThe name of the displacement variables
C++ Type:std::vector<VariableName>
Controllable:No
Description:The name of the displacement variables
- execute_onLINEARThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS.
Default:LINEAR
C++ Type:ExecFlagEnum
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS.
- polar_xThe x component of the polarization
C++ Type:std::vector<VariableName>
Controllable:No
Description:The x component of the polarization
- polar_yThe y component of the polarization
C++ Type:std::vector<VariableName>
Controllable:No
Description:The y component of the polarization
- polar_zThe z component of the polarization
C++ Type:std::vector<VariableName>
Controllable:No
Description:The z component of the polarization
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
GlobalATiO3MaterialRVEUserObject
Global Strain UserObject to provide Residual and diagonal Jacobian entry
Overview
Computes the necessary eigenstress needed for the GlobalStrain
system which performs the calculation,
over the computational volume . For a conventional ferroelectric material (i.e. where A is a cation such as Pb or Ba), the eigenstrain that is generated via the electrostrictive coupling is,
where and are components of the polarization vector . The quantites is the components of the electrostrictive tensor of rank four. Therefore the eigenstress is,
The total stress is calculated via,
More details of this approach are provided in Biswas et al. (2020).
Example Input File Syntax
Input Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (test/tests/action/action_test.i)
- (test/tests/electrooptics/BTO_monodomain_T298K_REF.i)
- (tutorial/ferroelectric_domain_wall.i)
- (examples/domain_walls/BTO_wall_T298K.i)
- (examples/monodomain/BTO_monodomain_Tdef.i)
- (test/tests/electrooptics/BTO_monodomain_T298K_REFnoEO.i)
- (test/tests/dispersion/genDomain_PzEz.i)
- (test/tests/dispersion/genDomain_PyEz.i)
- (test/tests/film/PTO_film3_T298K.i)
- (examples/films/PZTfilm_e12_T298K_E0.i)
- (test/tests/auxkernels/surface_charge.i)
- (examples/monodomain/PZT_monodomain_Tdef.i)
- (test/tests/dispersion/perturbBTO_PyEz.i)
- (test/tests/pbc/pbc.i)
- (test/tests/film/PTO_film3_T298K_noP.i)
- (examples/domain_walls/BTO_90wall_T298K.i)
- (tutorial/film.i)
- (test/tests/domain_wall/test_BTO_domain_wall.i)
- (test/tests/dispersion/perturbBTO_PzEz.i)
- (examples/monodomain/PTO_monodomain_Tdef.i)
- (test/tests/auxkernels/microforce.i)
- (examples/films/PTOfilm_e12_T298K_E0.i)
References
- Sudipta Biswas, Daniel Schwen, and Jason D. Hales.
Development of a finite element based strain periodicity implementation method.
Finite Elements Anal. Design, 2020.[BibTeX]
@article{Biswas2020, author = "Biswas, Sudipta and Schwen, Daniel and Hales, Jason D.", title = "{Development of a finite element based strain periodicity implementation method}", journal = "Finite Elements Anal. Design", volume = "179", issue = "103436", year = "2020", publisher = "Elsevier" }
(test/tests/action/action_test.i)
a1temp = -0.172197
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 5
ny = 5
nz = 5
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -3.0
xmax = 3.0
ymin = -3.0
ymax = 3.0
zmin = -3.0
zmax = 3.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-3.0 -3.0 -3.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
displacements = 'u_x u_y u_z'
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-2
max = 0.1e-2
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-2
max = 0.1e-2
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-2
max = 0.1e-2
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
[./Ez]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./ez]
type = QuasistaticFieldAux
variable = Ez
potential_int = potential_E_int
component = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
#C11 C12 C13 C22 C23 C33 C44 C55 C66
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[Ferret]
###############################################
##
## MOOSE and Ferret Kernel, Materials, and
## Postprocessors for TDLGD evolution
##
###############################################
[./ABO3CoupledPhaseField]
# {Variables to solve for}
variables = 'polar_x polar_y polar_z potential_E_int u_x u_y u_z'
###############################################
#
# {Governing Equation Flags}
#
###############################################
coupled_problem = true
polar_time_dependence = true
u_time_dependence = false
phi_time_dependence = false
###############################################
#
# {Materials: PbTiO3}
#
###############################################
alpha_ijkl = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
alpha_ijkl_val = '${a1temp} -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0'
G_ij = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
G_ij_val = '0.173 0.6 0.0 0.3 0.3'
is_permittivity_anisotropic = false
permittivity = 'permittivity'
permittivity_val = '0.08854187'
Q_ij = 'Q11 Q12 Q44'
Q_ij_val = '-0.089 0.026 -0.03375'
q_ij = 'q11 q12 q44'
q_ij_val = '-11.4 -0.01438 -7.5'
C_ij = 'C11 C12 C44'
C_ij_val = '175.0 79.4 111.1'
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Functions]
[./bc_func_1]
type = ParsedFunction
value = -5.0*sin(0.005*t)
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'polar_x polar_y polar_z u_x u_y u_z '
[../]
[./xy]
auto_direction = 'x y'
variable = 'potential_E_int'
[../]
[../]
[./boundary_grounding1]
type = FunctionDirichletBC
boundary = 'front'
variable = potential_E_int
function = bc_func_1
[../]
[./boundary_grounding2]
type = DirichletBC
boundary = 'back'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./avePx]
type = ElementAverageValue
variable = polar_x
execute_on = 'timestep_end'
[../]
[./avePy]
type = ElementAverageValue
variable = polar_y
execute_on = 'timestep_end'
[../]
[./avePz]
type = ElementAverageValue
variable = polar_z
execute_on = 'timestep_end'
[../]
[./aveEz]
type = ElementAverageValue
variable = Ez
execute_on = 'timestep_end'
[../]
[./ave_e00]
type = ElementAverageValue
variable = e00
execute_on = 'timestep_end'
[../]
[./ave_e11]
type = ElementAverageValue
variable = e11
execute_on = 'timestep_end'
[../]
[./ave_e22]
type = ElementAverageValue
variable = e22
execute_on = 'timestep_end'
[../]
[./Fb]
type = BulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./Fw]
type = WallEnergy
execute_on = 'timestep_end'
[../]
[./Fela]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
[../]
[./Fc]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'Fb Fw Fc Fele'
pp_coefs = '0.160218 0.160218 0.160218 0.160218'
execute_on = 'timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftot
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
#[./kill]
# type = Terminator
# expression = 'perc_change <= 1.0e-4'
# [../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-6 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
##
###########################################
dtmax = 1.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
num_steps = 2
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./outExo]
type = Exodus
file_base = out_pto-md_action
[../]
[./outCSV]
type = CSV
file_base = out_pto-md_action
[../]
[]
(test/tests/electrooptics/BTO_monodomain_T298K_REF.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 2
ny = 2
nz = 2
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-0.5 -0.5 -0.5'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
[./stripe1]
type = ParsedFunction
value = 0.01*cos(0.08975979010256552*(x)) # 0.08975979010256552 = 2pi/(xmax-xmin)
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.01
max = 0.02
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./stress_xx_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
######################################
##
## Principle change in refractive and
## refractive index components
##
######################################
[./dpn_1]
order = CONSTANT
family = MONOMIAL
[../]
[./dpn_2]
order = CONSTANT
family = MONOMIAL
[../]
[./dpn_3]
order = CONSTANT
family = MONOMIAL
[../]
[./den_1]
order = CONSTANT
family = MONOMIAL
[../]
[./den_2]
order = CONSTANT
family = MONOMIAL
[../]
[./den_3]
order = CONSTANT
family = MONOMIAL
[../]
[./n_1]
order = CONSTANT
family = MONOMIAL
[../]
[./n_2]
order = CONSTANT
family = MONOMIAL
[../]
[./n_3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./dn_p1]
type = PolarOpticChangeInRefractiveIndex
component = 0
variable = dpn_1
execute_on = 'timestep_end'
[../]
[./dn_p2]
type = PolarOpticChangeInRefractiveIndex
component = 1
variable = dpn_2
execute_on = 'timestep_end'
[../]
[./dn_p3]
type = PolarOpticChangeInRefractiveIndex
component = 2
variable = dpn_3
execute_on = 'timestep_end'
[../]
[./dn_e1]
type = ElastoChangeInRefractiveIndex
component = 0
variable = den_1
u_x = u_x
u_y = u_y
u_z = u_z
execute_on = 'timestep_end'
[../]
[./dn_e2]
type = ElastoChangeInRefractiveIndex
component = 1
variable = den_2
u_x = u_x
u_y = u_y
u_z = u_z
execute_on = 'timestep_end'
[../]
[./dn_e3]
type = ElastoChangeInRefractiveIndex
component = 2
variable = den_3
u_x = u_x
u_y = u_y
u_z = u_z
execute_on = 'timestep_end'
[../]
[./n_1_c]
type = ReworkedRefractiveIndex
variable = n_1
elasto = true
electro = false
polar = true
component = 0
var1 = dpn_1
var2 = den_1
execute_on = 'timestep_end'
[../]
[./n_2_c]
type = ReworkedRefractiveIndex
variable = n_2
elasto = true
electro = false
polar = true
component = 1
var1 = dpn_2
var2 = den_2
execute_on = 'timestep_end'
[../]
[./n_3_c]
type = ReworkedRefractiveIndex
variable = n_3
elasto = true
electro = false
polar = true
component = 2
var1 = dpn_3
var2 = den_3
execute_on = 'timestep_end'
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.11 0.045 0.045 -0.11 0.045 -0.11 -0.029 -0.029 -0.029'
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./ref_index]
############################################
##
## Cubic refractive index BTO
## (need correct value)
##
############################################
type = GenericConstantMaterial
prop_names = 'n1 n2 n3 n4 n5 n6'
prop_values = '2.4272 2.4272 2.4272 0.0 0.0 0.0'
[../]
[./po_tensor]
############################################
##
## PO tensor coefficients from
## Bernasconi and Günter
## J. Appl. Phys., 78, 2651 (1995)
##
############################################
type = GenericConstantMaterial
prop_names = 'g1111 g1122 g1212'
prop_values = '0.15 0.038 0.07'
[../]
[./eo_tensor]
############################################
##
## Elastoptic tensor coefficients from
## Bernasconi and Günter
## J. Appl. Phys., 78, 2651 (1995)
##
############################################
type = GenericConstantMaterial
prop_names = 'p1111 p1122 p1212'
prop_values = '0.37 0.11 -0.30'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
permittivity = 0.08854187
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '0 1 2 3 4 5'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
num_steps = 5
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = test_bire
elemental_as_nodal = true
[../]
[]
(tutorial/ferroelectric_domain_wall.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
nx = 480
ny = 1
nz = 1
xmin = -60.0
xmax = 60.0
ymin = -0.25
ymax = 0.25
zmin = -0.25
zmax = 0.25
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-60.0 -0.25 -0.25'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
[./stripe1]
type = ParsedFunction
value = 0.1*cos(0.05235987755*(x)) #2pi/L = 0.10471975512
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'stripe1'
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./walled2_x]
type = Wall2EnergyDerivative
variable = polar_x
component = 0
[../]
[./walled2_y]
type = Wall2EnergyDerivative
variable = polar_y
component = 1
[../]
[./walled2_z]
type = Wall2EnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '0.11 -0.045 0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '14.2 -0.74 1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '0.11 -0.045 -0.045 0.11 -0.045 0.11 0.029 0.029 0.029'
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total
## energy decomposed into linear combinations
## of the different physics.
##
###############################################
[./Fb]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fw]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Fela]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fc]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'Fb Fw Fc Fele'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftot
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the
## energy difference between subsequent time
## steps is lower than 1e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
growth_factor = 1.2
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
############################################
##
## Output options
##
############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_ferroelectric_domain_wall
elemental_as_nodal = true
execute_on = 'timestep_end'
interval = 2
[../]
[]
(examples/domain_walls/BTO_wall_T298K.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
nx = 60
ny = 2
nz = 2
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -30.0
xmax = 30.0
ymin = -1.0
ymax = 1.0
zmin = -1.0
zmax = 1.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
vol = vol
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
[./stripe1]
type = ParsedFunction
value = 0.1*cos(0.10471975512*(x+2)) #2pi/L = 0.10471975512
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'stripe1'
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.11 0.045 0.045 -0.11 0.045 -0.11 -0.029 -0.029 -0.029'
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fb]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fw]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Fela]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fc]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'Fb Fw Fc Fele'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'initial timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftot
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_bto_wall_T298K_2
elemental_as_nodal = true
[../]
[./console]
type = Console
time_precision = 3
[../]
[]
(examples/monodomain/BTO_monodomain_Tdef.i)
a1temp = a1def
a11temp = a11def
a111temp = a111def
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 8
ny = 8
nz = 8
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -2.0
xmax = 2.0
ymin = -2.0
ymax = 2.0
zmin = -2.0
zmax = 2.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
vol = vol
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.075
max = 0.1
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.075
max = 0.1
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.075
max = 0.1
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs00]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs11]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./eigs00]
type = LocalABO3EigenstressAux
variable = eigs00
index_i = 0
index_j = 0
[../]
[./eigs11]
type = LocalABO3EigenstressAux
variable = eigs11
index_i = 1
index_j = 1
[../]
[./eigs22]
type = LocalABO3EigenstressAux
variable = eigs22
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '${a1temp} ${a11temp} 0.323 ${a111temp} 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrains_name = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./avePx]
type = ElementAverageValue
variable = polar_x
execute_on = 'timestep_end'
[../]
[./avePy]
type = ElementAverageValue
variable = polar_y
execute_on = 'timestep_end'
[../]
[./avePz]
type = ElementAverageValue
variable = polar_z
execute_on = 'timestep_end'
[../]
[./ave_e00]
type = ElementAverageValue
variable = e00
execute_on = 'timestep_end'
[../]
[./ave_e11]
type = ElementAverageValue
variable = e11
execute_on = 'timestep_end'
[../]
[./ave_e22]
type = ElementAverageValue
variable = e22
execute_on = 'timestep_end'
[../]
[./Fb]
type = BulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./Fw]
type = WallEnergy
execute_on = 'timestep_end'
[../]
[./Fela]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
[../]
[./Fc]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'Fb Fw Fc Fele'
pp_coefs = ' 1 1 1 1'
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftot
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is smallhotkey for tilde
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-6 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./outCSV]
type = CSV
file_base = out_bto_monodomain_Tdef
[../]
[]
(test/tests/electrooptics/BTO_monodomain_T298K_REFnoEO.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 2
ny = 2
nz = 2
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-0.5 -0.5 -0.5'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
[./stripe1]
type = ParsedFunction
value = 0.01*cos(0.08975979010256552*(x)) # 0.08975979010256552 = 2pi/(xmax-xmin)
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.01
max = 0.02
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./stress_xx_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
######################################
##
## Principle change in refractive and
## refractive index components
##
######################################
[./dpn_1]
order = CONSTANT
family = MONOMIAL
[../]
[./dpn_2]
order = CONSTANT
family = MONOMIAL
[../]
[./dpn_3]
order = CONSTANT
family = MONOMIAL
[../]
[./den_1]
order = CONSTANT
family = MONOMIAL
[../]
[./den_2]
order = CONSTANT
family = MONOMIAL
[../]
[./den_3]
order = CONSTANT
family = MONOMIAL
[../]
[./n_1]
order = CONSTANT
family = MONOMIAL
[../]
[./n_2]
order = CONSTANT
family = MONOMIAL
[../]
[./n_3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./dn_p1]
type = PolarOpticChangeInRefractiveIndex
component = 0
variable = dpn_1
execute_on = 'timestep_end'
[../]
[./dn_p2]
type = PolarOpticChangeInRefractiveIndex
component = 1
variable = dpn_2
execute_on = 'timestep_end'
[../]
[./dn_p3]
type = PolarOpticChangeInRefractiveIndex
component = 2
variable = dpn_3
execute_on = 'timestep_end'
[../]
[./dn_e1]
type = ElastoChangeInRefractiveIndex
component = 0
variable = den_1
u_x = u_x
u_y = u_y
u_z = u_z
execute_on = 'timestep_end'
[../]
[./dn_e2]
type = ElastoChangeInRefractiveIndex
component = 1
variable = den_2
u_x = u_x
u_y = u_y
u_z = u_z
execute_on = 'timestep_end'
[../]
[./dn_e3]
type = ElastoChangeInRefractiveIndex
component = 2
variable = den_3
u_x = u_x
u_y = u_y
u_z = u_z
execute_on = 'timestep_end'
[../]
[./n_1_c]
type = ReworkedRefractiveIndex
variable = n_1
elasto = false
electro = false
polar = true
component = 0
var1 = dpn_1
execute_on = 'timestep_end'
[../]
[./n_2_c]
type = ReworkedRefractiveIndex
variable = n_2
elasto = false
electro = false
polar = true
component = 1
var1 = dpn_2
execute_on = 'timestep_end'
[../]
[./n_3_c]
type = ReworkedRefractiveIndex
variable = n_3
elasto = false
electro = false
polar = true
component = 2
var1 = dpn_3
execute_on = 'timestep_end'
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.11 0.045 0.045 -0.11 0.045 -0.11 -0.029 -0.029 -0.029'
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./ref_index]
############################################
##
## Cubic refractive index BTO
## (need correct value)
##
############################################
type = GenericConstantMaterial
prop_names = 'n1 n2 n3 n4 n5 n6'
prop_values = '2.4272 2.4272 2.4272 0.0 0.0 0.0'
[../]
[./po_tensor]
############################################
##
## PO tensor coefficients from
## Bernasconi and Günter
## J. Appl. Phys., 78, 2651 (1995)
##
############################################
type = GenericConstantMaterial
prop_names = 'g1111 g1122 g1212'
prop_values = '0.15 0.038 0.07'
[../]
[./eo_tensor]
############################################
##
## Elastoptic tensor coefficients from
## Bernasconi and Günter
## J. Appl. Phys., 78, 2651 (1995)
##
############################################
type = GenericConstantMaterial
prop_names = 'p1111 p1122 p1212'
prop_values = '0.37 0.11 -0.30'
[../]
[./eps]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '0 1 2 3 4 5'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
num_steps = 5
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = test_bire_no_EO
elemental_as_nodal = true
[../]
[]
(test/tests/dispersion/genDomain_PzEz.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 2
ny = 2
nz = 2
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-0.5 -0.5 -0.5'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.01
max = 0.02
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./stress_xx_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs00]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs11]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./eigs00]
type = LocalABO3EigenstressAux
variable = eigs00
index_i = 0
index_j = 0
[../]
[./eigs11]
type = LocalABO3EigenstressAux
variable = eigs11
index_i = 1
index_j = 1
[../]
[./eigs22]
type = LocalABO3EigenstressAux
variable = eigs22
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0.0 0.0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_name = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '0 1 2 3 4 5'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '0.0 0.0 0.0 0.0 0.0 0.0'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_PzEz
elemental_as_nodal = true
[../]
[]
(test/tests/dispersion/genDomain_PyEz.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 2
ny = 2
nz = 2
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-0.5 -0.5 -0.5'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.01
max = 0.02
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./stress_xx_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs00]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs11]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./eigs00]
type = LocalABO3EigenstressAux
variable = eigs00
index_i = 0
index_j = 0
[../]
[./eigs11]
type = LocalABO3EigenstressAux
variable = eigs11
index_i = 1
index_j = 1
[../]
[./eigs22]
type = LocalABO3EigenstressAux
variable = eigs22
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0.0 0.0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_name = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '0 1 2 3 4 5'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '0.0 0.0 0.0 0.0 0.0 0.0'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_PyEz
elemental_as_nodal = true
[../]
[]
(test/tests/film/PTO_film3_T298K.i)
[Mesh]
[gen]
############################################
##=
## Type and dimension of the mesh
##=
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##=
#############################################
nx = 4
ny = 4
nz = 18 #need approximately 90 processors for this since dof is 953133 and we want 10k dof/proc
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -2.0
xmax = 2.0
ymin = -2.0
ymax = 2.0
zmin = -10.0
zmax = 8.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##=
############################################
type = ExtraNodesetGenerator
coord = '-2.0 -2.0 -10.0'
new_boundary = 100
[../]
[subdomains]
type = SubdomainBoundingBoxGenerator
input = cnode
bottom_left = '-2.0 -2.0 -10.0'
block_id = 1
top_right = '2.0 2.0 0'
location = INSIDE
[]
[film_interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomains
primary_block = 0
paired_block = 1
new_boundary = 52
[]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
vol = vol
##############################################
##=
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-5
max = 0.1e-5
[../]
block = '0 1'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-5
max = 0.1e-5
[../]
block = '0 1'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-5
max = 0.1e-5
[../]
block = '0 1'
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_x]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_y]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_z]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
block = '0 1'
[../]
[./disp_y]
block = '0 1'
[../]
[./disp_z]
block = '0 1'
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## add comments
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##=
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0'
block = '0'
[../]
[./Landau_P_substr]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
block = '1'
[../]
############################################
##
## add comments
##
############################################
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '0'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175.0 79.4 111.1'
block = '0'
[../]
[./mat_C_sub]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '220.0 34.4 161.1'
block = '1'
[../]
##################################################
##=
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
block = '0 1'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_names = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
block = '0 1'
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
block = '0 1'
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
block = '0 1'
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
block = '0 1'
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
block = '0 1'
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
block = '0 1'
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
block = '0 1'
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
block = '0 1'
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
block = '0 1'
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
block = '0 1'
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
block = '0 1'
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
block = '0 1'
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
block = '0 1'
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
block = '0 1'
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xy]
auto_direction = 'x y'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '52'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 'back'
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 'back'
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 'back'
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##=
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'timestep_end'
block = '0'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
block = '0'
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
u_x = u_x
u_y = u_y
u_z = u_z
block = '0'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
block = '0'
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
block = '0'
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
block = '0'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
###############################################
##=
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '4.375 4.375 3.97 0.0 0.0 0.0'
block = '0 1'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##=
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-8 1e-5 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
dtmax = 0.6
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.2
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.6
[../]
verbose = true
nl_max_its = 20
num_steps = 5
[]
[Outputs]
###############################################
##===============
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_pto_film_test
elemental_as_nodal = true
interval = 1
[../]
[]
(examples/films/PZTfilm_e12_T298K_E0.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 32
ny = 32
nz = 30
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -16.0
xmax = 16.0
ymin = -16.0
ymax = 16.0
zmin = -10.0
zmax = 20.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-16.0 -16.0 -10.0'
new_boundary = 100
[../]
[subdomains]
type = SubdomainBoundingBoxGenerator
input = cnode
bottom_left = '-16.0 -16.0 -10.0'
block_id = 1
top_right = '16.0 16.0 0'
location = INSIDE
[]
[film_interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomains
primary_block = 0
paired_block = 1
new_boundary = 52
[]
[film_surface]
type = SideSetsFromNormalsGenerator
input = film_interface
normals = '0 0 1'
fixed_normal = true
new_boundary = '107'
[]
[substrate_bottom]
type = SideSetsFromNormalsGenerator
input = film_surface
normals = '0 0 -1'
fixed_normal = true
new_boundary = '108'
[]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##=
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
vol = vol
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_x]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_y]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_z]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
block = '0 1'
[../]
[./disp_y]
block = '0 1'
[../]
[./disp_z]
block = '0 1'
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_x]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_y]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_z]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./ex]
type = ElecFieldAux
variable = E_x
component = 0
[../]
[./ey]
type = ElecFieldAux
variable = E_y
component = 1
[../]
[./ez]
type = ElecFieldAux
variable = E_z
component = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Landau, electrostrictive, elastic coefficients
## M. Mtebwa, A. K. Tagantsev, and N. Setter
## AIP Adv. 4, 127150 (2014).
##
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.048889 0.04764 0.1336 0.1735 0.6128 -2.894 0.0 0.0 0.0 0.0'
block = '0'
[../]
[./Landau_P_substr]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
block = '1'
[../]
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '0'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '179.073 66.71 82.6446'
block = '0'
[../]
[./mat_C_sub]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '220.0 34.4 161.1'
block = '1'
[../]
##################################################
##=
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.0966 0.046 -0.0819'
block = '0 1'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.1608 4.86165 -6.76859'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '179.073 66.71 66.71 179.073 66.71 179.073 82.6446 82.6446 82.6446'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_names = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
block = '0'
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
block = '0'
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
block = '0'
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
block = '0'
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
block = '0'
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
block = '0'
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
block = '0'
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
block = '0 1'
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
block = '0'
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
block = '0'
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
block = '0'
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable = polar_y
time_scale = 1.0
block = '0'
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
block = '0'
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xy]
auto_direction = 'x y'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
[./boundary_interface_grounding]
type = DirichletBC
boundary = '52'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = '108'
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = '108'
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = '108'
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##=
## Postprocessors (integrations over the
## computational domain) to calculate the total
## energy decomposed into linear combinations of
## the different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'timestep_end'
block = '0'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
block = '0'
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = '0.160218 0.160218 0.160218 0.160218' #converted to eV
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
block = '0'
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
block = '0'
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
block = '0'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'timestep_end'
[../]
[./elapsed]
type = PerfGraphData
section_name = "Root" # for profiling the problem [on]
data_type = total
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '2.1 2.1 1.9056 0.0 0.0 0.0'
block = '0'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 5.0e-4'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 80 1e-8 1e-6 1e-5 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integ=ration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'bdf2'
dtmin = 1e-13
dtmax = 0.6
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.2
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.6
[../]
verbose = true
nl_max_its = 20
[]
[Outputs]
###############################################
##==
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_PTOfilm_e12_T298K_E0_E0
elemental_as_nodal = true
interval = 1
[../]
[]
(test/tests/auxkernels/surface_charge.i)
[Mesh]
[gen]
############################################
##=
## Type and dimension of the mesh
##=
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##=
#############################################
nx = 4
ny = 4
nz = 8
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -1.0
xmax = 1.0
ymin = -1.0
ymax = 1.0
zmin = -2.0
zmax = 2.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-1.0 -1.0 -2.0'
new_boundary = 100
[../]
[subdomains]
type = SubdomainBoundingBoxGenerator
input = cnode
bottom_left = '-1.0 -1.0 -2.0'
block_id = 1
top_right = '1.0 1.0 0'
location = INSIDE
[]
[film_interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomains
primary_block = 0
paired_block = 1
new_boundary = 52
[]
[film_surface]
type = SideSetsFromNormalsGenerator
input = film_interface
normals = '0 0 1'
fixed_normal = true
new_boundary = '107'
[]
[substrate_bottom]
type = SideSetsFromNormalsGenerator
input = film_surface
normals = '0 0 -1'
fixed_normal = true
new_boundary = '108'
[]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##=
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_x]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_y]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_z]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
block = '0 1'
[../]
[./disp_y]
block = '0 1'
[../]
[./disp_z]
block = '0 1'
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
######################################
##
## divP and surf charge
##
######################################
[./divP]
order = CONSTANT
family = MONOMIAL
block = '0'
[../]
[./surfP]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./divP]
type = DivP
variable = divP
[../]
[./surfP]
type = SurfaceChargeP
variable = surfP
boundary = '107'
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## add comments
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##=
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0'
block = '0'
[../]
[./Landau_P_substr]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
block = '1'
[../]
############################################
##
## add comments
##
############################################
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '0'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175.0 79.4 111.1'
block = '0'
[../]
[./mat_C_sub]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '220.0 34.4 161.1'
block = '1'
[../]
##################################################
##=
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
block = '0 1'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_names = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
block = '0'
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
block = '0'
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
block = '0'
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
block = '0'
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
block = '0'
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
block = '0'
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
block = '0'
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
block = '0 1'
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
block = '0'
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
block = '0'
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
block = '0'
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
block = '0'
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
block = '0'
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xy]
auto_direction = 'x y'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
[./boundary_interface_grounding]
type = DirichletBC
boundary = '52'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = '108'
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = '108'
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = '108'
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##=
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'timestep_end'
block = '0'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
block = '0'
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = '0.160218 0.160218 0.160218 0.160218' #convert to eV
execute_on = 'timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
###############################################
##=
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '0.0 0.0 0.0 0.0 0.0 0.0'
block = '0'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 5.0e-4'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##=
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 80 1e-8 1e-5 1e-5 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integ=ration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'bdf2'
dtmin = 1e-13
dtmax = 0.6
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.2
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.6
[../]
verbose = true
nl_max_its = 20
num_steps = 6
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_surface_charge
elemental_as_nodal = true
interval = 1
[../]
[]
(examples/monodomain/PZT_monodomain_Tdef.i)
a1temp = a1def
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 8
ny = 8
nz = 8
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -2.0
xmax = 2.0
ymin = -2.0
ymax = 2.0
zmin = -2.0
zmax = 2.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
vol = vol
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-6
max = 0.1e-6
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-6
max = 0.1e-6
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.05
max = 0.1
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs00]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs11]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./eigs00]
type = LocalABO3EigenstressAux
variable = eigs00
index_i = 0
index_j = 0
[../]
[./eigs11]
type = LocalABO3EigenstressAux
variable = eigs11
index_i = 1
index_j = 1
[../]
[./eigs22]
type = LocalABO3EigenstressAux
variable = eigs22
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Landau, electrostrictive, elastic coefficients
## M. Mtebwa, A. K. Tagantsev, and N. Setter
## AIP Adv. 4, 127150 (2014).
##
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '${a1temp} 0.04764 0.1336 0.1735 0.6128 -2.894 0.0 0.0 0.0 0.0'
block = '0'
[../]
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '0'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '179.073 66.71 82.6446'
block = '0'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.0966 0.046 -0.0819'
block = '0'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.1608 4.86165 -6.76859'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '179.073 66.71 66.71 179.073 66.71 179.073 82.6446 82.6446 82.6446'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrains_name = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '0 1 2 3 4 5'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./avePx]
type = ElementAverageValue
variable = polar_x
execute_on = 'timestep_end'
[../]
[./avePy]
type = ElementAverageValue
variable = polar_y
execute_on = 'timestep_end'
[../]
[./avePz]
type = ElementAverageValue
variable = polar_z
execute_on = 'timestep_end'
[../]
[./ave_e00]
type = ElementAverageValue
variable = e00
execute_on = 'timestep_end'
[../]
[./ave_e11]
type = ElementAverageValue
variable = e11
execute_on = 'timestep_end'
[../]
[./ave_e22]
type = ElementAverageValue
variable = e22
execute_on = 'timestep_end'
[../]
[./Fb]
type = BulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./Fw]
type = WallEnergy
execute_on = 'timestep_end'
[../]
[./Fela]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
[../]
[./Fc]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'Fb Fw Fc Fele'
pp_coefs = ' 1 1 1 1'
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftot
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is smallhotkey for tilde
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-6 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
##
###########################################
dtmax = 1.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./outCSV]
type = CSV
file_base = out_pzt_monodomain_Tdef
[../]
[]
(test/tests/dispersion/perturbBTO_PyEz.i)
freq = 177827941.00389227
amplitude = 1e-3
[Mesh]
file = out_PyEz.e
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
##############################
##
## Define the electric field
## expression to be used below
##
##############################
[./bc_func_1]
type = ParsedFunction
value = 'amplitude*sin(freq*t)'
vars = 'freq amplitude'
vals = '${freq} ${amplitude}'
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_x
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_y
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_z
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./stress_xx_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./Ez]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./cEy]
type = QuasistaticFieldAux
component = 2
potential_int = potential_E_int
variable = Ez
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0.0 0.0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable = polar_x
# Time scale estimate for BTO, from Hlinka (2007)
# We use seconds here
time_scale = 1e-12
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable = polar_y
time_scale = 1e-12
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1e-12
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./front_pot]
type = FunctionDirichletBC
variable = potential_E_int
boundary = 'front'
function = bc_func_1
[../]
[./boundary_grounding]
type = DirichletBC
boundary = 'left right top bottom back'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
[./avePz]
type = ElementAverageValue
variable = polar_z
execute_on = 'initial timestep_end'
[../]
[./Ea]
type = ElementAverageValue
variable = Ez
execute_on = 'initial timestep_end'
[../]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-16
dt = 3.5332947520558995e-10
dtmax = 1e-10
verbose = true
num_steps = 5
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_perturbBTO_PyEz0
elemental_as_nodal = true
[../]
[./outCSV]
type = CSV
new_row_tolerance = 1e-16
file_base = out_perturbBTO_PyEz0
[../]
[]
(test/tests/pbc/pbc.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 6
ny = 6
nz = 2
xmin = -6.0
xmax = 6.0
ymin = -6.0
ymax = 6.0
zmin = -2.0
zmax = 2.0
elem_type = HEX8
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '-6.0 -6.0 -2.0'
new_boundary = 100
[../]
# additional boundary sideset (one node) to zero one of the elastic displacement vectors - eliminates rigid body translations from the degrees of freedom
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 0.42 0.735 0.26 0.61 -3.67 0 0 0 0'
[../]
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175 79.4 111.1'
[../]
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.089 0.026 0.026 -0.089 0.026 -0.089 -0.03375 -0.03375 -0.03375'
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./permitivitty_1]
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
#note below we use a strain-renormalized functional for lead titanate (this is different than the stress-free functionals typically used)
# they are related by a Legendre transformation
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
#[./elapsed]
# type = PerfGraphData
# section_name = "Root"
# data_type = total
#[../]
#[./nodes]
# type = NumNodes
#[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-8 1e-8 bjacobi allreduce'
[../]
[]
#[Debug]
# show_var_residual_norms = true
#[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
dtmax = 0.8
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
num_steps = 10
#[./Adaptivity]
# coarsen_fraction = 0.1
# refine_fraction = 0.7
# max_h_level = 1
#[../]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[./out]
type = Exodus
file_base = out_pbc
elemental_as_nodal = true
interval = 5
[../]
[./outCSV]
type = CSV
file_base = out_pbc
[../]
[]
(test/tests/film/PTO_film3_T298K_noP.i)
[Mesh]
[gen]
############################################
##=
## Type and dimension of the mesh
##=
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##=
#############################################
nx = 4
ny = 4
nz = 18 #need approximately 90 processors for this since dof is 953133 and we want 10k dof/proc
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -2.0
xmax = 2.0
ymin = -2.0
ymax = 2.0
zmin = -10.0
zmax = 8.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##=
############################################
type = ExtraNodesetGenerator
coord = '-2.0 -2.0 -10.0'
new_boundary = 100
[../]
[subdomains]
type = SubdomainBoundingBoxGenerator
input = cnode
bottom_left = '-2.0 -2.0 -10.0'
block_id = 1
top_right = '2.0 2.0 0'
location = INSIDE
[]
[film_interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomains
primary_block = 0
paired_block = 1
new_boundary = 52
[]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
vol = vol
##############################################
##=
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-5
max = 0.1e-5
[../]
block = '0'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-5
max = 0.1e-5
[../]
block = '0'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-5
max = 0.1e-5
[../]
block = '0'
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_x]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_y]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_z]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
block = '0 1'
[../]
[./disp_y]
block = '0 1'
[../]
[./disp_z]
block = '0 1'
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## add comments
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##=
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0'
block = '0'
[../]
[./Landau_P_substr]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
block = '1'
[../]
############################################
##
## add comments
##
############################################
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '0'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175.0 79.4 111.1'
block = '0'
[../]
[./mat_C_sub]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '220.0 34.4 161.1'
block = '1'
[../]
##################################################
##=
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
block = '0 1'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_names = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
block = '0'
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
block = '0'
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
block = '0'
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
block = '0'
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
block = '0'
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
block = '0'
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
block = '0'
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
block = '0 1'
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
block = '0'
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
block = '0'
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xy]
auto_direction = 'x y'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '52'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 'back'
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 'back'
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 'back'
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##=
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'timestep_end'
block = '0'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
block = '0'
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
u_x = u_x
u_y = u_y
u_z = u_z
block = '0'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
block = '0'
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
block = '0'
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
block = '0'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
###############################################
##=
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '4.375 4.375 3.97 0.0 0.0 0.0'
block = '0'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##=
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-8 1e-5 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
dtmax = 0.6
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.2
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.6
[../]
verbose = true
nl_max_its = 20
num_steps = 5
[]
[Outputs]
###############################################
##===============
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_pto_film_noP_test
elemental_as_nodal = true
interval = 1
[../]
[]
(examples/domain_walls/BTO_90wall_T298K.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
nx = 60
ny = 60
nz = 2
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -30.0
xmax = 30.0
ymin = -30.0
ymax = 30.0
zmin = -1.0
zmax = 1.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
vol = vol
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
[./stripe1]
type = ParsedFunction
value = 0.1*cos(0.10471975511965977*((x+5)+(y+5)))+0.1 # 0.10471975511965977 = pi/(xmax-xmin)
[../]
[./stripe2]
type = ParsedFunction
value = -0.1*cos(0.10471975511965977*((x+5)+(y+5)))+0.1
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'stripe1'
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = 'stripe2'
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.11 0.045 0.045 -0.11 0.045 -0.11 -0.029 -0.029 -0.029'
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fb]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fw]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Fela]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fc]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'Fb Fw Fc Fele'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftot
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-6 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_bto_90wall_T298K_2
elemental_as_nodal = true
[../]
[./console]
type = Console
time_precision = 3
[../]
[]
(tutorial/film.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
nx = 32
ny = 32
nz = 30
xmin = -16.0
xmax = 16.0
ymin = -16.0
ymax = 16.0
zmin = -10.0
zmax = 20.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-16.0 -16.0 -10.0'
new_boundary = 100
[../]
[subdomains]
type = SubdomainBoundingBoxGenerator
input = cnode
bottom_left = '-16.0 -16.0 -10.0'
block_id = 1
top_right = '16.0 16.0 0'
location = INSIDE
[]
[film_interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomains
primary_block = 0
paired_block = 1
new_boundary = 52
[]
[film_surface]
type = SideSetsFromNormalsGenerator
input = film_interface
normals = '0 0 1'
fixed_normal = true
new_boundary = '107'
[]
[substrate_bottom]
type = SideSetsFromNormalsGenerator
input = film_surface
normals = '0 0 -1'
fixed_normal = true
new_boundary = '108'
[]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##=
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
vol = vol
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_x]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_y]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_z]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_names = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
block = '0'
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
block = '0'
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
block = '0'
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./walled2_x]
type = Wall2EnergyDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./walled2_y]
type = Wall2EnergyDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./walled2_z]
type = Wall2EnergyDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
block = '0'
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
block = '0'
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
block = '0'
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
block = '0'
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
block = '0 1'
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
block = '0'
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
block = '0'
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
block = '0'
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable = polar_y
time_scale = 1.0
block = '0'
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
block = '0'
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
block = '0 1'
[../]
[./disp_y]
block = '0 1'
[../]
[./disp_z]
block = '0 1'
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_x]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_y]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_z]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Landau coefficients from Li et al (2001)
##
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0'
block = '0'
[../]
[./Landau_P_substr]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
block = '1'
[../]
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '0'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175.0 79.4 111.1'
block = '0'
[../]
[./mat_C_sub]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '220.0 34.4 161.1'
block = '1'
[../]
##################################################
##=
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
block = '0 1'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[BCs]
[./Periodic]
[./xy]
auto_direction = 'x y'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
[./boundary_interface_grounding]
type = DirichletBC
boundary = '52'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = '108'
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = '108'
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = '108'
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##=
## Postprocessors (integrations over the
## computational domain) to calculate the total
## energy decomposed into linear combinations of
## the different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'timestep_end'
block = '0'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
block = '0'
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = '0.160218 0.160218 0.160218 0.160218' #converted to eV
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
block = '0'
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
block = '0'
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
block = '0'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'timestep_end'
[../]
[./elapsed]
type = PerfGraphData
section_name = "Root" # for profiling the problem [on]
data_type = total
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '2.1 2.1 1.9056 0.0 0.0 0.0'
block = '0'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 5.0e-4'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 80 1e-8 1e-6 1e-5 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integ=ration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'bdf2'
dtmin = 1e-13
dtmax = 0.6
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.2
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.6
[../]
verbose = true
nl_max_its = 20
[]
[Outputs]
###############################################
##==
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_PTOfilm_e12_T298K_E0_E0
elemental_as_nodal = true
interval = 1
[../]
[]
(test/tests/domain_wall/test_BTO_domain_wall.i)
############################################
##
## to use this file, scale up size and add
## the functionIC to the polar field for the
## appropriate wall
## current Nov 2020 tests benchmark this
## within 10% of FFT calculations using the
## same functional
##
############################################
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 2
ny = 2
nz = 2
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-0.5 -0.5 -0.5'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
[./stripe1]
type = ParsedFunction
value = 0.01*cos(0.08975979010256552*(x))
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE1: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
## NOTE2: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.11 0.045 0.045 -0.11 0.045 -0.11 -0.029 -0.029 -0.029'
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./wall2ed_x]
type = Wall2EnergyDerivative
variable = polar_x
component = 0
[../]
[./wall2ed_y]
type = Wall2EnergyDerivative
variable = polar_y
component = 1
[../]
[./wall2ed_z]
type = Wall2EnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '0 1 2 3 4 5'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-8 1e-8 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
## for PTO is about 0.8 but BTO more like 3-10
##
###########################################
dtmax = 3.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
num_steps = 4
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = test
elemental_as_nodal = true
[../]
[]
(test/tests/dispersion/perturbBTO_PzEz.i)
freq = 1778279410.0389228
amplitude = 0.001
[Mesh]
file = out_PzEz.e
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Functions]
##############################
##
## Define the electric field
## expression to be used below
##
##############################
[./bc_func_1]
type = ParsedFunction
value = 'amplitude*sin(freq*t)'
vars = 'freq amplitude'
vals = '${freq} ${amplitude}'
[../]
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_x
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_y
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
initial_from_file_var = polar_z
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./stress_xx_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz_elastic]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./Ez]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./cEy]
type = QuasistaticFieldAux
component = 2
potential_int = potential_E_int
variable = Ez
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.027721 -0.64755 0.323 8.004 4.47 4.91 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.5 0.51 -0.02 0.02 0.0'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '275.0 179.0 54.3'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.11 0.045 -0.029'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-14.2 0.74 -1.57'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0.0 0.0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '275.0 179.0 179.0 275.0 179.0 275.0 54.3 54.3 54.3'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable = polar_x
# Time scale estimate for BTO, from Hlinka (2007)
# We use seconds here
time_scale = 1e-12
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable = polar_y
time_scale = 1e-12
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1e-12
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./front_pot]
type = FunctionDirichletBC
variable = potential_E_int
boundary = 'front'
function = bc_func_1
[../]
[./boundary_grounding]
type = DirichletBC
boundary = 'back'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
[./avePz]
type = ElementAverageValue
variable = polar_z
execute_on = 'initial timestep_end'
[../]
[./Ea]
type = ElementAverageValue
variable = Ez
execute_on = 'initial timestep_end'
[../]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '0.0 0.0 0.0 0.0 0.0 0.0'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-10 1e-8 1e-8 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-16
dt = 3.5332947520558994e-11
dtmax = 1e-10
verbose = true
num_steps = 5
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_perturbBTO_PzEz0
elemental_as_nodal = true
[../]
[./outCSV]
type = CSV
new_row_tolerance = 1e-16
file_base = out_perturbBTO_PzEz0
[../]
[]
(examples/monodomain/PTO_monodomain_Tdef.i)
a1temp = a1def
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 8
ny = 8
nz = 8
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -2.0
xmax = 2.0
ymin = -2.0
ymax = 2.0
zmin = -2.0
zmax = 2.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
vol = vol
displacements = 'u_x u_y u_z'
##############################################
##
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-6
max = 0.1e-6
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.1e-6
max = 0.1e-6
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0.05
max = 0.1
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs00]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs11]
order = CONSTANT
family = MONOMIAL
[../]
[./eigs22]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./eigs00]
type = LocalABO3EigenstressAux
variable = eigs00
index_i = 0
index_j = 0
[../]
[./eigs11]
type = LocalABO3EigenstressAux
variable = eigs11
index_i = 1
index_j = 1
[../]
[./eigs22]
type = LocalABO3EigenstressAux
variable = eigs22
index_i = 2
index_j = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Bulk free energy and electrostrictive
## coefficients gleaned from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
## NOTE: there might be some Legendre transforms
## depending on what approach you use
## -i.e. inhomogeneous strain vs
## homogeneous strain [renormalized]
##
##################################################
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '${a1temp} -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0'
[../]
############################################
##
## Gradient coefficients from
## Marton and Hlinka
## Phys. Rev. B. 74, 104014, (2006)
##
############################################
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175.0 79.4 111.1'
[../]
##################################################
##
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrains_name = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z'
[../]
[../]
[./boundary_grounding]
type = DirichletBC
boundary = '0 1 2 3 4 5'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##
## Postprocessors (integrations over the
## computational domain) to calculate the total energy
## decomposed into linear combinations of the
## different physics.
##
###############################################
[./avePx]
type = ElementAverageValue
variable = polar_x
execute_on = 'timestep_end'
[../]
[./avePy]
type = ElementAverageValue
variable = polar_y
execute_on = 'timestep_end'
[../]
[./avePz]
type = ElementAverageValue
variable = polar_z
execute_on = 'timestep_end'
[../]
[./ave_e00]
type = ElementAverageValue
variable = e00
execute_on = 'timestep_end'
[../]
[./ave_e11]
type = ElementAverageValue
variable = e11
execute_on = 'timestep_end'
[../]
[./ave_e22]
type = ElementAverageValue
variable = e22
execute_on = 'timestep_end'
[../]
[./Fb]
type = BulkEnergyEighth
execute_on = 'timestep_end'
[../]
[./Fw]
type = WallEnergy
execute_on = 'timestep_end'
[../]
[./Fela]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
[../]
[./Fc]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
[../]
[./Fele]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
[../]
[./Ftot]
type = LinearCombinationPostprocessor
pp_names = 'Fb Fw Fc Fele'
pp_coefs = ' 1 1 1 1'
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftot
execute_on = 'timestep_end'
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is smallhotkey for tilde
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-6 1e-6 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
###########################################
##
## dtmax is material dependent!
##
###########################################
dtmax = 1.0
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
verbose = true
[]
[Outputs]
###############################################
##
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./outCSV]
type = CSV
file_base = out_pto_monodomain_Tdef
[../]
[]
(test/tests/auxkernels/microforce.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
xmin = -6.0
xmax = 6.0
ymin = -6.0
ymax = 6.0
zmin = -2.0
zmax = 2.0
elem_type = HEX8
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '-6.0 -6.0 -2.0'
new_boundary = 100
[../]
# additional boundary sideset (one node) to zero one of the elastic displacement vectors - eliminates rigid body translations from the degrees of freedom
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -0.01e-4
max = 0.01e-4
seed = 6
[../]
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
[../]
[./u_x]
order = FIRST
family = LAGRANGE
[../]
[./u_y]
order = FIRST
family = LAGRANGE
[../]
[./u_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./Fb_x]
order = CONSTANT
family = MONOMIAL
[../]
[./Fb_y]
order = CONSTANT
family = MONOMIAL
[../]
[./Fb_z]
order = CONSTANT
family = MONOMIAL
[../]
[./Felstr_x]
order = CONSTANT
family = MONOMIAL
[../]
[./Felstr_y]
order = CONSTANT
family = MONOMIAL
[../]
[./Felstr_z]
order = CONSTANT
family = MONOMIAL
[../]
[./Felec_x]
order = CONSTANT
family = MONOMIAL
[../]
[./Felec_y]
order = CONSTANT
family = MONOMIAL
[../]
[./Felec_z]
order = CONSTANT
family = MONOMIAL
[../]
[./Fw_x]
order = CONSTANT
family = MONOMIAL
[../]
[./Fw_y]
order = CONSTANT
family = MONOMIAL
[../]
[./Fw_z]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./fbx]
type = MicroforceBulkEnergy
variable = Fb_x
component = 0
[../]
[./fby]
type = MicroforceBulkEnergy
variable = Fb_y
component = 1
[../]
[./fbz]
type = MicroforceBulkEnergy
variable = Fb_z
component = 2
[../]
[./felstrx]
type = MicroforceElectrostrictiveCouplingEnergy
variable = Felstr_x
component = 0
[../]
[./felstry]
type = MicroforceElectrostrictiveCouplingEnergy
variable = Felstr_y
component = 1
[../]
[./felstrz]
type = MicroforceElectrostrictiveCouplingEnergy
variable = Felstr_z
component = 2
[../]
[./felecx]
type = MicroforceElectrostaticEnergy
variable = Felec_x
component = 0
[../]
[./felecy]
type = MicroforceElectrostaticEnergy
variable = Felec_y
component = 1
[../]
[./felecz]
type = MicroforceElectrostaticEnergy
variable = Felec_z
component = 2
[../]
[./fwx]
type = MicroforceWallEnergy
variable = Fw_x
component = 0
[../]
[./fwy]
type = MicroforceWallEnergy
variable = Fw_y
component = 1
[../]
[./fwz]
type = MicroforceWallEnergy
variable = Fw_z
component = 2
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
[./Landau_P]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 0.42 0.735 0.26 0.61 -3.67 0 0 0 0'
[../]
[./Landau_G]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
[../]
[./mat_C]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175 79.4 111.1'
[../]
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
eigen_base = '0. 0 0 0 0 0 0 0 0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./slab_ferroelectric]
type = ComputeElectrostrictiveTensor
Q_mnkl = '-0.089 0.026 0.026 -0.089 0.026 -0.089 -0.03375 -0.03375 -0.03375'
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./permitivitty_1]
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
#note below we use a strain-renormalized functional for lead titanate (this is different than the stress-free functionals typically used)
# they are related by a Legendre transformation
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable=polar_y
time_scale = 1.0
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xyz]
auto_direction = 'x y z'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Postprocessors]
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'initial timestep_end'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'initial timestep_end'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'initial timestep_end'
use_displaced_mesh = false
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'initial timestep_end'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'initial timestep_end'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = ' 1 1 1 1'
execute_on = 'initial timestep_end'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'initial timestep_end'
[../]
#[./elapsed]
# type = PerfGraphData
# section_name = "Root"
# data_type = total
#[../]
#[./nodes]
# type = NumNodes
#[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
[../]
[./kill]
type = Terminator
expression = 'perc_change <= 1.0e-6'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 160 1e-8 1e-8 1e-8 bjacobi allreduce'
[../]
[]
#[Debug]
# show_var_residual_norms = true
#[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
scheme = 'implicit-euler'
dtmin = 1e-13
dtmax = 0.8
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.3
[../]
num_steps = 10
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[./out]
type = Exodus
file_base = out_microforce_test
elemental_as_nodal = true
interval = 1
[../]
[./outCSV]
type = CSV
file_base = out_microforce_test
[../]
[]
(examples/films/PTOfilm_e12_T298K_E0.i)
[Mesh]
[gen]
############################################
##
## Type and dimension of the mesh
##
############################################
type = GeneratedMeshGenerator
dim = 3
#############################################
##
## Grid definition. Note that it should be
## nJ = 2*(Jmax-Jmin) for J = x, y, z
##
#############################################
nx = 32
ny = 32
nz = 30
#############################################
##
## Actual spatial coordinates of mesh.
## Jmax - Jmin = nJ/2 for J = x, y, z
## Units are in nanometers
##
#############################################
xmin = -16.0
xmax = 16.0
ymin = -16.0
ymax = 16.0
zmin = -10.0
zmax = 20.0
#############################################
##
## FE type/order (hexahedral, tetrahedral
##
#############################################
elem_type = HEX8
[]
[./cnode]
input = gen
############################################
##
## additional boundary sideset (one node)
## to zero one of the elastic displacement vectors
## vectors and eliminates rigid body translations
## from the degrees of freedom
##
## NOTE: This must conform with the about
## [Mesh] block settings
##
############################################
type = ExtraNodesetGenerator
coord = '-16.0 -16.0 -10.0'
new_boundary = 100
[../]
[subdomains]
type = SubdomainBoundingBoxGenerator
input = cnode
bottom_left = '-16.0 -16.0 -10.0'
block_id = 1
top_right = '16.0 16.0 0'
location = INSIDE
[]
[film_interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomains
primary_block = 0
paired_block = 1
new_boundary = 52
[]
[film_surface]
type = SideSetsFromNormalsGenerator
input = film_interface
normals = '0 0 1'
fixed_normal = true
new_boundary = '107'
[]
[substrate_bottom]
type = SideSetsFromNormalsGenerator
input = film_surface
normals = '0 0 -1'
fixed_normal = true
new_boundary = '108'
[]
[]
[GlobalParams]
len_scale = 1.0
polar_x = polar_x
polar_y = polar_y
polar_z = polar_z
potential_E_int = potential_E_int
displacements = 'u_x u_y u_z'
##############################################
##=
## IMPORTANT(!): Units in Ferret are nm, kg,
## seconds, and attocoulombs
##
##############################################
vol = vol
u_x = u_x
u_y = u_y
u_z = u_z
[]
[Variables]
#################################
##
## Variable definitions
## P, u, phi, e^global_ij
## and their initial conditions
##
#################################
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./polar_x]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_y]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./polar_z]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = -1e-2
max = 1e-2
[../]
block = '0'
[../]
[./potential_E_int]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_x]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_y]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[./u_z]
order = FIRST
family = LAGRANGE
block = '0 1'
[../]
[]
[AuxVariables]
######################################
##
## Auxiarilly variable definitions
## (can be intermediate variables
## or for postprocessed quantities)
##
######################################
######################################
##
## Global displacements
##
######################################
[./disp_x]
block = '0 1'
[../]
[./disp_y]
block = '0 1'
[../]
[./disp_z]
block = '0 1'
[../]
######################################
##
## Stress/strain tensor components
##
######################################
[./e00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s12]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./s22]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_x]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_y]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[./E_z]
order = CONSTANT
family = MONOMIAL
block = '0 1'
[../]
[]
[AuxKernels]
######################################
##
## Auxiarilly Kernel definitions
## (can be intermediate "operations"
## or for postprocessed quantities)
##
######################################
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
use_displaced_mesh = false
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
use_displaced_mesh = false
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
use_displaced_mesh = false
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e12]
type = RankTwoAux
variable = e12
rank_two_tensor = total_strain
index_i = 1
index_j = 2
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[./e22]
type = RankTwoAux
variable = e22
rank_two_tensor = total_strain
index_i = 2
index_j = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s12]
type = RankTwoAux
variable = s12
rank_two_tensor = stress
index_i = 1
index_j = 2
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./ex]
type = ElecFieldAux
variable = E_x
component = 0
[../]
[./ey]
type = ElecFieldAux
variable = E_y
component = 1
[../]
[./ez]
type = ElecFieldAux
variable = E_z
component = 2
[../]
[]
[ScalarKernels]
######################################
##
## Necessary for PBC system
##
######################################
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
use_displaced_mesh = false
[../]
[]
[Materials]
#################################################
##
## Landau coefficients from Li et al (2001)
##
##################################################
[./Landau_P_FE]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '-0.1722883 -0.073 0.75 0.26 0.61 -3.67 0.0 0.0 0.0 0.0'
block = '0'
[../]
[./Landau_P_substr]
type = GenericConstantMaterial
prop_names = 'alpha1 alpha11 alpha12 alpha111 alpha112 alpha123 alpha1111 alpha1112 alpha1122 alpha1123'
prop_values = '10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
block = '1'
[../]
[./Landau_G_FE]
type = GenericConstantMaterial
prop_names = 'G110 G11_G110 G12_G110 G44_G110 G44P_G110'
prop_values = '0.173 0.6 0.0 0.3 0.3'
block = '0'
[../]
[./mat_C_FE]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '175.0 79.4 111.1'
block = '0'
[../]
[./mat_C_sub]
type = GenericConstantMaterial
prop_names = 'C11 C12 C44'
prop_values = '220.0 34.4 161.1'
block = '1'
[../]
##################################################
##=
## NOTE: Sign convention in Ferret for the
## electrostrictive coeff. is multiplied by
## an overall factor of (-1)
##
##################################################
[./mat_Q]
type = GenericConstantMaterial
prop_names = 'Q11 Q12 Q44'
prop_values = '-0.089 0.026 -0.03375'
block = '0 1'
[../]
[./mat_q]
type = GenericConstantMaterial
prop_names = 'q11 q12 q44'
prop_values = '-11.4 -0.01438 -7.5'
[../]
[./eigen_strain]
type = ComputeEigenstrain
# eigen_base = 'exx exy exz eyx eyy eyz ezx ezy ezz'
eigen_base = '1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0'
eigenstrain_name = eigenstrain
prefactor = 0.0
[../]
[./elasticity_tensor_1]
type = ComputeElasticityTensor
fill_method = symmetric9
###############################################
##
## symmetric9 fill_method is (default)
## C11 C12 C13 C22 C23 C33 C44 C55 C66
##
###############################################
C_ijkl = '175.0 79.4 79.4 175.0 79.4 175.0 111.1 111.1 111.1'
[../]
[./strain_1]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./permitivitty_1]
###############################################
##
## so-called background dielectric constant
## (it encapsulates the motion of core electrons
## at high frequency) = e_b*e_0 (here we use
## e_b = 10), see PRB. 74, 104014, (2006)
##
###############################################
type = GenericConstantMaterial
prop_names = 'permittivity'
prop_values = '0.08854187'
[../]
[]
[Kernels]
###############################################
##
## Physical Kernel operators
## to enforce TDLGD evolution
##
###############################################
#Elastic problem
[./TensorMechanics]
use_displaced_mesh = false
eigenstrain_names = eigenstrain
[../]
[./bed_x]
type = BulkEnergyDerivativeEighth
variable = polar_x
component = 0
block = '0'
[../]
[./bed_y]
type = BulkEnergyDerivativeEighth
variable = polar_y
component = 1
block = '0'
[../]
[./bed_z]
type = BulkEnergyDerivativeEighth
variable = polar_z
component = 2
block = '0'
[../]
[./walled_x]
type = WallEnergyDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./walled_y]
type = WallEnergyDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./walled_z]
type = WallEnergyDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./electrostr_ux]
type = ElectrostrictiveCouplingDispDerivative
variable = u_x
component = 0
block = '0'
[../]
[./electrostr_uy]
type = ElectrostrictiveCouplingDispDerivative
variable = u_y
component = 1
block = '0'
[../]
[./electrostr_uz]
type = ElectrostrictiveCouplingDispDerivative
variable = u_z
component = 2
block = '0'
[../]
[./electrostr_polar_coupled_x]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_x
component = 0
block = '0'
[../]
[./electrostr_polar_coupled_y]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_y
component = 1
block = '0'
[../]
[./electrostr_polar_coupled_z]
type = ElectrostrictiveCouplingPolarDerivative
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_electric_E]
type = PolarElectricEStrong
variable = potential_E_int
block = '0'
[../]
[./FE_E_int]
type = Electrostatics
variable = potential_E_int
block = '0 1'
[../]
[./polar_electric_px]
type = PolarElectricPStrong
variable = polar_x
component = 0
block = '0'
[../]
[./polar_electric_py]
type = PolarElectricPStrong
variable = polar_y
component = 1
block = '0'
[../]
[./polar_electric_pz]
type = PolarElectricPStrong
variable = polar_z
component = 2
block = '0'
[../]
[./polar_x_time]
type = TimeDerivativeScaled
variable=polar_x
time_scale = 1.0
block = '0'
[../]
[./polar_y_time]
type = TimeDerivativeScaled
variable = polar_y
time_scale = 1.0
block = '0'
[../]
[./polar_z_time]
type = TimeDerivativeScaled
variable = polar_z
time_scale = 1.0
block = '0'
[../]
[./u_x_time]
type = TimeDerivativeScaled
variable = u_x
time_scale = 1.0
[../]
[./u_y_time]
type = TimeDerivativeScaled
variable = u_y
time_scale = 1.0
[../]
[./u_z_time]
type = TimeDerivativeScaled
variable = u_z
time_scale = 1.0
[../]
[]
[BCs]
[./Periodic]
[./xy]
auto_direction = 'x y'
variable = 'u_x u_y u_z polar_x polar_y polar_z potential_E_int'
[../]
[../]
[./boundary_interface_grounding]
type = DirichletBC
boundary = '52'
variable = potential_E_int
value = 0.0
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = '108'
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = '108'
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = '108'
variable = u_z
value = 0
[../]
[]
[Postprocessors]
###############################################
##=
## Postprocessors (integrations over the
## computational domain) to calculate the total
## energy decomposed into linear combinations of
## the different physics.
##
###############################################
[./Fbulk]
type = BulkEnergyEighth
execute_on = 'timestep_end'
block = '0'
[../]
[./Fwall]
type = WallEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felastic]
type = ElasticEnergy
execute_on = 'timestep_end'
use_displaced_mesh = false
block = '0'
[../]
[./Fcoupled]
type = ElectrostrictiveCouplingEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Felec]
type = ElectrostaticEnergy
execute_on = 'timestep_end'
block = '0'
[../]
[./Ftotal]
type = LinearCombinationPostprocessor
pp_names = 'Fbulk Fwall Fcoupled Felec'
pp_coefs = '0.160218 0.160218 0.160218 0.160218' #converted to eV
execute_on = 'timestep_end'
[../]
[./vol]
type = VolumePostprocessor
execute_on = 'timestep_end'
[../]
[./px]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 0
block = '0'
[../]
[./py]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 1
block = '0'
[../]
[./pz]
type = DomainVariantPopulation
execute_on = 'timestep_end'
component = 2
block = '0'
[../]
[./perc_change]
type = PercentChangePostprocessor
postprocessor = Ftotal
execute_on = 'timestep_end'
[../]
[./elapsed]
type = PerfGraphData
section_name = "Root" # for profiling the problem [on]
data_type = total
[../]
[]
[UserObjects]
###############################################
##
## GlobalStrain system to enforce periodicity
## in the anisotropic strain field
##
###############################################
[./global_strain_uo]
type = GlobalATiO3MaterialRVEUserObject
use_displaced_mesh = false
execute_on = 'Initial Linear Nonlinear'
applied_stress_tensor = '2.1 2.1 1.9056 0.0 0.0 0.0'
block = '0'
[../]
###############################################
##
## terminator to end energy evolution when the energy difference
## between subsequent time steps is lower than 5e-6
##
## NOTE: can fail if the time step is small
##
###############################################
[./kill]
type = Terminator
expression = 'perc_change <= 5.0e-4'
[../]
[]
[Preconditioning]
###############################################
##
## Numerical preconditioning/solver options
##
###############################################
[./smp]
type = SMP
full = true
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -snes_atol -snes_rtol -ksp_rtol -pc_type -build_twosided'
petsc_options_value = ' 80 1e-8 1e-6 1e-5 bjacobi allreduce'
[../]
[]
[Executioner]
##########################################
##
## Time integ=ration/solver options
##
##########################################
type = Transient
solve_type = 'PJFNK'
scheme = 'bdf2'
dtmin = 1e-13
dtmax = 0.6
l_max_its = 200
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
growth_factor = 1.2
cutback_factor = 0.75
linear_iteration_ratio = 1000
dt = 0.6
[../]
verbose = true
nl_max_its = 20
[]
[Outputs]
###############################################
##==
## Output options
##
###############################################
print_linear_residuals = false
perf_graph = false
[./out]
type = Exodus
file_base = out_PTOfilm_e12_T298K_E0_E0
elemental_as_nodal = true
interval = 1
[../]
[]